Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

Overview

FL Analysis

This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness" submitted to EMSE journal.

Replication

Main experiment

All experiments are done using python 3.8 and TensorFlow 2.4

Steps to run the experiments are as follows:

  1. The options for each configuration are set in JSON file which should be in the root directory by default. However, this can be changed using the environment variable CONFIG_PATH.

  2. The paths for the output and the processed ADNI dataset is set using the environment variables RESULTS_ROOT and ADNI_ROOT respectively. If these variables are not set the mentioned paths will use "./results" and "./adni" as default.

  3. Run the main program by python test.py

  • Note that the results will be overwritten if same config is run for multiple time. To avoid that RESULTS_ROOT can be changed at each run.

Config details

The config file can have the following options:

    "dataset": one of the following 
      "adni"
      "mnist"
      "cifar"
    "aggregator": one of the following 
      "fed-avg"
      "median"
      "trimmed-mean"
      "krum"
      "combine"
    "attack": one of the following
      "label-flip"
      "noise-data"
      "overlap-data"
      "delete-data"
      "unbalance-data"
      "random-update"
      "sign-flip"
      "backdoor"
    "attack-fraction": a float between 0 and 1
    "non-iid-deg": a float between 0 and 1
    "num-rounds": an integer value

Notes:

  1. attack field is optional. If it is not present, no attack will be applied and attack-fraction is not necessary.
  2. If dataset is set to adni, non-iid-deg field is not necessary
  3. The aggregator field is optional and if it is not present it will use the default fed-avg.
  4. All configurations used in our experiments are available in configs folder

ADNI dataset

ADNI dataset is not included in the repository due to user agreements, but information about it is available in www.adni-info.org.

Once the dataset is available, data can be processed with extract_central_axial_slices_adni.ipynb

Results Visualization

Results can be visualized using the visualizer.ipynb.

  • The root folder of the results should be set in the notebook before running.
  • Visualizations will be saved in the root folder under 0images folder.
  • The visualizer expects the root sub folders to be the results of the different runs.

An example:


_root
├── _run1
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
├── _run2
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
└── _run3
    ├── cifar-0--fedavg--clean
    └── cifar-0--krum--clean


Results

All results are available in the results folder (ADNI, CIFAR, Fashion MNIST, Ensemble). Each sub folder that represents a dataset contains the details of runs, plus processed visualizations and raw csv files in a folder called 0images.

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022