Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Overview

Xilinx_Vitis_AI

This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board.


Prerequisites

  1. Vitis Core Development Kit 2019.2

This could be downloaded from here: Link to the websire

  1. Vitis-AI GitHub Repository v1.1

Here is the link to the repository v1.1

  1. Vitis-Ai Docker Container

The command to pull the container: docker pull xilinx/vitis-ai:1.1.56

  1. XRT 2019.2

GitHub Repo Link 2019.2

  1. Avnet Vitis Platform 2019.2

Here is the link to download the zip file Avnet Website

  1. Ubuntu OS 18.04

Once the tools have been setup, there are five (5) main steps to targeting an AI applications to Ultra96V2 Platform:

  1. Build the Hardware Design
  2. Compile Your Custom Model
  3. Build the AI Applications
  4. Create the SD Card Content
  5. Execute the AI Applications on hardware

Supposed that you have trained your model previously in one of the Tensorflow (.Pb), Caffe(.Caffemodel and .Prototxt) and Darknet(.Weights and .Cfg) Frameworks.

Build the Hardware Design

Clone Xilinx’s Vitis-AI github repository:

$ git clone --branch v1.1 https://github.com/Xilinx/Vitis-AI
$ cd Vitis-AI
$ export VITIS_AI_HOME = "$PWD"

Install the Avnet Vitis platform:>

Download this and extract to the hard drive of your linux machine. Then, specify the location of the Vitis platform, by creating the SDX_PLATFORM environment variable that specified to the location of the.xpfm file.

$ export SDX_PLATFORM=/home/Avnet/vitis/platform_repo/ULTRA96V2/ULTRA96V2.xpfm

Build the Hardware Project (SD Card Image)

I suggest you to download the Pre-Built from here

Compile the Trained Models

Remember that you should have pulled the docker container first.

Caffe Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-caffe
$ vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -calib_iter 5
$ vai_c_caffe -p .PROTOTXT -c .CAFFEMODEL -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Tensorflow Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-tensorflow
$ vai_q_tensorflow quantize --input_frozen_graph FROZEN_PB --input_nodes xxx --output_nodes yyy --input_shapes zzz --input_fn module.calib_input --calib_iter 5
$ vai_c_tensorflow -f FROZEN_PB -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Compile the AI Application Using DNNDK APIs

The DNNDK API is the low-level API used to communicate with the AI engine (DPU). This API is the recommended API for users that will be creating their own custom neural networks.

Download and install the SDK for cross-compilation, specifying a unique and meaningful installation destination (knowing that this SDK will be specific to the Vitis-AI 1.1 DNNDK samples):

$ wget -O sdk.sh https://www.xilinx.com/bin/public/openDownload?filename=sdk.sh
$ chmod +x sdk.sh
$ ./sdk.sh -d ~/petalinux_sdk_vai_1_1_dnndk 

Setup the environment for cross-compilation:

$ unset LD_LIBRARY_PATH
$ source ~/petalinux_sdk_vai_1_1_dnndk/environment-setup-aarch64-xilinx-linux

Download and extract the DNNDK runtime examples and Install the additional DNNDK runtime content:

$ wget -O vitis-ai_v1.1_dnndk.tar.gz  https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk.tar.gz
$ tar -xvzf vitis-ai-v1.1_dnndk.tar.gz
$ cd vitis-ai-v1.1_dnndk
$ ./install.sh $SDKTARGETSYSROOT

Copy the Compiled project:

$ cp -r ../project/ .

Download and extract the additional content (images and video files) for the DNNDK examples:

$ wget -O vitis-ai_v1.1_dnndk_sample_img.tar.gz https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk_sample_img.tar.gz
$ tar -xvzf vitis-ai_v1.1_dnndk_sample_img.tar.gz

For the custom application (project folder), create a model directory and copy the dpu_*.elf model files you previously built:

$ cd $VITIS_AI_HOME/project
$ mkdir model_for_ultra96v2
$ cp -r model_for_ultra96v2 model
$ make

NOTE: You could also edit the build.sh script to add support for the new Platforms like Ultra96V2.

Execute the AI Application on ULTRA96V2

  1. Boot the Ultra96V2 with the pre-build sd-card image you dowloaded. For Learning How to Do This, Click HERE!
  2. $ cd /run/media/mmcblk0p1
  3. $ cp dpu.xclbin /usr/lib/.
  4. Install the Vitis-AI embedded package:
$ cd runtime/vitis-ai_v1.1_dnndk 
$ source ./install.sh
  1. Define the DISPLAY environment variable:
$ export DISPLAY=:0.0
$ xrandr --output DP-1 --mode 640x480
  1. Run the Custom Application:
 $ cd vitis_ai_dnndk_samples
 $ ./App 
Owner
Amin Mamandipoor
Currently, Studying Master of Computer Systems Architecture at the University of Tabriz.
Amin Mamandipoor
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023