Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Overview

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

License: GPL v3

Introduction

This repository includes codes and models of "Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection" paper. link: https://doi.org/10.1016/j.compbiomed.2020.104121

Dataset

First you should download the MHSMA dataset using:

git clone https://github.com/soroushj/mhsma-dataset.git

Usage

First of all,the configuration file should be setted.So open dmtl.txt or dtl.txt and set the setting you want.This files contains paramaters of the model that you are going to train.

  • dtl.txt have only one line and contains paramaters to train a DTL model.

  • dmtl.txt contains two lines:paramaters of stage 1 are kept in the first line of the file and paramaters of stage 2 are kept in the second line of the file.
    Some paramaters have an aray of three values that they keep the value of three labels.To set them,consider this sequence:[Acrosome,Vacoule,Head].

  • To train a DTL model,use the following commands and arguments:

python train.py -t dtl [-e epchos] [-label label]  [-model model] [-w file] 

Argumetns:

Argument Description
-t type of network(dtl or dmtl)
-e number of epochs
-label label(a,v or h)
-model pre-trained model
-w name of best weihgt file
--phase You can use it to choose stage in DMTL(1 or 2)
--second_model The base model for second stage of DMTL

1.Train

  • To choose a pre-trained model, you can use one of the following models:
model argument Description
vgg_19 VGG 19
vgg_16 VGG 16
resnet_50 Resnet 50
resnet_101 Resnet 101
resnet_502 Resnet 502
  • To train a DMTL model,use the following commands and arguments:
python train.py -t dmtl [--phase phase] [-e epchos] [-label label] [-model model] [-w file]

Also you can use your own pre-trained model by using address of your model instead of the paramaters been told in the table above.

Example:
python train.py -t dmtl --phase 1 -e 100 -label a -model C:\model.h5 -w w.h5

2.K Fold

  • To perform K Fold on a model,use "-k_fold True" argument.
python train.py -k_fold True [-t type] [-e epchos] [-label label] [-model model] [-w file]

3.Threshold Search

  • To find a good threshold for your model,use the following code:
python threshold.py [-t type] [-addr model address] [-l label]

Models

The CNN models that were introduced and evaluated in our research paper can be found in the v1.0 release of this repository.

You might also like...
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Multi-task yolov5 with detection and segmentation based on yolov5
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

A novel Engagement Detection with Multi-Task Training (ED-MTT) system
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Comments
  • a possible typo(bug)

    a possible typo(bug)

    Very interesting idea and complements!

    In LoadData.py, starting from line 150, ` if phase == 'search':

        return {
                "x_train": x_train_128,
                "y_train": y_train,
                "x_train_128": x_train_128,
                'x_val_128': x_valid_128,
                "x_val": x_valid_128,
                "y_val": y_valid,
                "x_test": x_test_128,
                "y_test": y_test
                }`
    

    here, I think that the first key-value pair should probably be "x_train": x_train instead of "x_train": x_train_128, which causes an error of shape mismatch during fit.

    opened by captainst 0
Releases(v1.0)
Owner
Amir Abbasi
Student at University of Guilan (Computer Engineering), Working on Computer Vision & Reinforcement Learning
Amir Abbasi
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022