Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Overview

header_image

Long Course

"Geophysical Python for Seismic Data Analysis"

Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si

Dipersiapkan oleh: Anang Sahroni

Waktu:

Sesi 1: 18 September 2021

Sesi 2: 25 September 2021

Tempat: Zoom Meeting

Agenda: Memberikan wawasan kepada mahasiswa Geofisika dalam pengolahan data Geofisika: pemrosesan data seismik menggunakan python.

Luaran

  1. Peserta dapat melakukan instalasi Python
  2. Peserta dapat membuat dan menggunakan Jupyter Notebook
  3. Peserta dapat membaca, memfilter, dan mengeplot peta dan statistik gempa bumi menggunakan modul umum Python seperti numpy, scipy, dan matplotlib
  4. Peserta dapat menentukan parameter gempa menggunakan metode yang sederhana pada Python memanfaatkan modul seismologi seperti obspy

Peralatan untuk peserta

Laptop ataupun Personal Computer (PC) yang terkoneksi dengan internet.
Jika hendak menjalankan kode tanpa instalasi bisa melalui: Binder

Data:

  1. Katalog Gempa Bumi Badan Meteorologi Klimatologi dan Geofisika (BMKG)
  2. Titik-titik Stasiun untuk berbagai jaringan seismometer

Jadwal

Topik
PRESESI: 17 September 2021
Instalasi Python dalam Miniconda atau PDF
1. Instalasi Miniconda pada Windows, Linux, ataupun MacOS
2. Menjalankan Python Console melalui Anaconda Prompt
3. Menulis kode dalam editor (Integrated Development Environment/IDE) kode dan menjalankannya melalui Anaconda Prompt
4. Pengenalan IDE dan beberapa contohnya
5. Menginstall pandas, numpy, matplotlib, scipy, Cartopy, dan notebook menggunakan Anaconda Prompt pada virtual environment
6. Menjalankan kode sederhana di Jupyter Notebook
7. Memanggil fungsi bawaan python (math), mencoba, dan memanggil bantuan (help) untuk masing-masing fungsi
8. Memberikan catatan dan gambar dalam bentuk Markdown di Jupyter Notebook
9. Menyimpan notebook pada repositori Github dan menambahkan ke Binder
10. Mengupdate notebook dan melakukan commit ke repositori
EXERCISE: Membuat panduan instalasi Miniconda pada Jupyter Notebook dan menambahkannya di repositori Github individu.
SESI 1: 18 September 2021
Introduction to geophysical programming using python: basic python for seismology Materi 1 (PDF/Open In Colab) dan Materi 2 (PDF/Open In Colab) atau Binder
1. Membaca data katalog menggunakan pandas
2. Membedakan jenis-jenis data antar kolom pada katalog (String, Integer, dan Float)
3. Mengambil salah satu kolom ke dalam bentuk List dan mempelajari metode-metode pada List (indexing, slicing, append, dan lain sebagainya)
4. Menggunakan for loop untuk mengkonversi format String menjadi datetime untuk waktu kejadian
5. Menggunakan conditional untuk memfilter katalog berdasarkan besar magnitudo atau waktu
6. Membuat fungsi untuk memfilter katalog berdasarkan kedalaman dan menyimpannya menjadi modul siap impor
7. Membuat plot magnitudo dengan jumlah kejadian dan waktu kejadian (dapat berupa G-R Plot atau plot sederhana)
8. Mengkombinasikan List latitude dan longitude untuk mengeplot episenter
9. Mengintegrasikan kolom magnitude untuk membedakan ukuran titik titik plot
10. Mengintegrasikan kolom kedalaman untuk membedakan warna titik plot
11. Menambahkan basemap pada plot Menggunakan Cartopy
EXERCISE: Membaca file titik stasiun, memfilter berdasarkan network, dan mengeplotnya bersama dengan titik-titik gempa.
SESI 2: 25 September 2021
Source Mechanism and processing seismic data with python : Determine earthquake epicenter, hypocenter, and type of P Wave
Jika menggunakan komputer lokal silahkan install modul yang dibutuhkan pada sesi dua dengan cara: conda install -c conda-forge xarray rasterio tqdm
1. Menentukan episenter dengan metode lingkaran Materi
2. Menentukan hiposenter dengan metode Geiger dan probabilistik Materi 1, Materi 2
3. Pengenalan pengolahan waveform dengan obspy Materi

Software untuk diinstall

  1. Miniconda. Instalasi Python akan dilakukan menggunakan Anaconda Distribution dalam bentuk lite yaitu Miniconda. Dengan Miniconda instalasi paket atau modul pendukung untuk Python akan lebih mudah dan tertata. Unduh installer Miniconda, pilih untuk versi Python 3.8.
  2. Editor teks agar penulisan kode lebih mudah karena biasanya sudah disertai pewarnaan kode (syntax highlighting) dan indentasi otomatis. Editor teks dapat menggunakan Notepad++, SublimeText, atau menggunakan IDE yang lebih kompleks seperti PyCharm dan Visual Studio Code.

Software-software yang dibutuhkan tersebut sudah harus diinstall sebelum proses pemberian materi dimulai karena ukurannya cukup besar.

Akun Github

Peserta workshop dianjurkan mendaftarkan akun GitHub melalui Daftar Github

Bacaan Tambahan:

Peserta dapat belajar pada Lesson di Software Carpentry dengan materi yang mendalam dan metode yang sama yaitu learning by doing.

Referensi

Panduan ini disusun terinspirasi dari materi pada Software Carpentry, materi inversi hiposenter probabilistik Igel & Geßele di Seismo Live,panduan workshop Leonardo Uieda pada repositori, serta Lisa Itauxe Python for ES Student berikut ini.

You might also like...
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

 A data analysis using python and pandas to showcase trends in school performance.
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

A collection of learning outcomes data analysis using Python and SQL, from DQLab.
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dynamical systems.

Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

 Project under the certification
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

Releases(v1.0.0)
Owner
Anang Sahroni
newbie/amateur
Anang Sahroni
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
University Challenge 2021 With Python

University Challenge 2021 This repository contains: The TeX file of the technical write-up describing the University / HYPER Challenge 2021 under late

2 Nov 27, 2021
This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot.

superSFS This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot. It is easy-to-use and runing fast. What you s

3 Dec 16, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
Python reader for Linked Data in HDF5 files

Linked Data are becoming more popular for user-created metadata in HDF5 files.

The HDF Group 8 May 17, 2022
CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner.

CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner. It is aimed to integrate this tool with several more features including providing a U

Ravi Prakash 3 Jun 27, 2021
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
Fitting thermodynamic models with pycalphad

ESPEI ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for thermodynamic database development within the CALPHAD method

Phases Research Lab 42 Sep 12, 2022
SparseLasso: Sparse Solutions for the Lasso

SparseLasso: Sparse Solutions for the Lasso Introduction SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tunin

Gabriel Okasa 1 Nov 08, 2021
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of D

Joachim 1 Dec 26, 2021
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022