Parameterising Simulated Annealing for the Travelling Salesman Problem

Overview

Parameterising Simulated Annealing for the Travelling Salesman Problem

animated

Abstract

The Travelling Salesman Problem is a well known NP-Hard problem. Given a list of cities, find the shortest path that visits all cities once.

Simulated annealing is a well known stochastic method for solving optimisation problems and is a well known non-exact algorithm for solving the TSP. However, it's effectiveness is dependent on initial parameters such as the starting temperature and cooling rate which is often chosen empirically.

The goal of this project is to:

  • Determine if the optimal starting temperature and cooling rate can be parameterised off the input
  • Visualise the solving process of the TSP

Usage

Running the code

Examples of common commands to run the files are shown below. However, both src/main.py and src/benchmark.py have a --help that explains the optional flags.

# To visualise annealing on a problem set from the input file
python3 -m src.main -f <input_file>

# To visualise TSP on a random graph with 
   
     number of cities
   
python3 -m src.main -c <city_count>

# Benchmark the parameters using all problems in the data folder
python3 -m src.benchmark

Keyboard Controls

There are also ways to control the visualisation through key presses while it plays.

Key Action
Space Bar Pauses or unpauses the solver
Left / Right arrow Control how frequently the frame is redrawn
c Toggles showing the cities as nodes (this is off by default as it causes lag)

Creating your own model

If you would like to create your own instance of the TSP problem and visualise it:

  1. Create a new file
  2. Within this file ensure you have the line NODE_COORD_SECTION, and below that EOF.
  3. Between those two lines, you can place the coordinates of the cities, i.e. for the nth city, have a line like , where x and y are the x and y coordinates of the city.
  4. Run python3 -m src.main -f , where is the path to the file you have just made.

Files

File / Folder Purpose
data This contains TSP problems in .tsp files and their optimal solution in .opt.tour files, taken from TSPLIB
report The report detailing the Simulated Annealing and the experimentation
results The output directory containing results of the tests
src/benchmark.py Code for benchmarking different temperatures and cooling rates using the problems in the data folder
src/main.py Driver code to start the visualisation
src/setup.py Code for loading in city coordinates from a file, or generating random ones
src/solvers.py Module containing the python implementations of TSP solving algorithms

FAQ

What do you use to generate the graphics?

This project uses the p5py library for visualisation. Unfortunately, (to of my knowledge) this may not work with WSL.

What are the results of your research?

Idk. Still working on it.

What can I do to contribute?

Pog.

This is more of a "what I would I do if I have more time" but whatever, let's say you actually are interested. Disclaimer - the code isn't particularly polished (from me pivoting project ideas multiple times).

  • If you're up for a challenge, it would be interesting to implement LKH (Lin-Kernighan heuristic) efficiently
  • Implement other algorithms - they just need to extend the Solver abstract class to work with the frontend
  • Add a whatever city you want and it's coordinates to data/world.tsp!
Owner
Gary Sun
hi
Gary Sun
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022