TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Overview

Parameterization of Hypercomplex Multiplications (PHM)

This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication) layers and PHM-Transformers in the paper Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters at ICLR 2021.

Installation

One may install the following libraries before running our code:

Usage

The usage of this repository follows the original tensor2tensor repository (e.g., t2t-datagen, t2t-trainer, t2t-avg-all, followed by t2t-decoder). It helps to gain familiarity on tensor2tensor before attempting to run our code. Specifically, setting --t2t_usr_dir=./Parameterization-of-Hypercomplex-Multiplications will allow tensor2tensor to register PHM-Transformers.

Training

For example, to evaluate PHM-Transformer (n=4) on the En-Vi machine translation task (t2t-datagen --problem=translate_envi_iwslt32k), one may set the following flags when training:

t2t-trainer \
--problem=translate_envi_iwslt32k \
--model=light_transformer \
--hparams_set=light_transformer_base_single_gpu \
--hparams="light_mode='random',hidden_size=512,factor=4" \
--train_steps=50000

where light_transformer with light_mode='random' is the alias of the PHM-Transformer in our implementation.

Aggretating Checkpoints

After training, the latest 8 checkpoints are averaged:

t2t-avg-all --model_dir $TRAIN_DIR --output_dir $AVG_DIR --n 8

where $TRAIN_DIR and $AVG_DIR need to be specified by users.

Testing

To decode the target sequence, one has to additionally set the decode_hparams as follows:

t2t-decoder \
--decode_hparams="beam_size=5,alpha=0.6"

Then t2t-bleu is invoked for calculating the BLEU.

PHM Implementations

PHM is implemented with operations in make_random_mul and random_ffn, which are mathematically equivalent to sum of Kronecker products.

Among works that use PHM, some have offered alternative PHM implementations:

Citation

If you find this repository helpful, please cite our paper:

@inproceedings{zhang2021beyond,
  title={Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with $1/n$ Parameters},
  author={Zhang, Aston and Tay, Yi and Zhang, Shuai and Chan, Alvin and Luu, Anh Tuan and Hui, ‪Siu Cheung and Fu, Jie},
  booktitle={International Conference on Learning Representations},
  year={2021}
}
Owner
Aston Zhang
Dive into Deep Learning: D2L.ai 《动手学深度学习》: zh.D2L.ai
Aston Zhang
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022