This is an example of a reproducible modelling project

Overview

An example of a reproducible modelling project

What are we doing?

This example was created for the 2021 fall lecture series of Stanford's Center for Open and REproducible Science (CORES).

A video of the talk can be found at: https://youtu.be/JAQot6b1Cng

The goal of this exemplary analysis is to explore the effect of varying different hyper-parameters of the training of a simple classification model on its performance in scikit-learn's handwritten digit dataset.

Specifically, we will study the effect of varying the learning rate, regularisation strength, number of gradient descent steps, and random shuffling of the data on the 3-fold cross-validation performance of scikit-learn's linear support vector machine classifier.

Importantly, each hyper-parameter is varied separately while all other hyper-parameters are set to default values (for details, see scripts/evaluate_hyper_params_effect.py).

Project organization

├── LICENSE            <- MIT License
├── Makefile           <- Makefile with targets to 'load', 'evaluate', and 'plot' ('make all' runs all three analysis steps)
├── poetry.lock        <- Details of used package versions
├── pyproject.toml     <- Lists all dependencies
├── README.md          <- This README file.
├── docs/              
|    └──               <- Slides of the practical tutorial
├── data/
|    └──               <- A copy of the handwritten digit dataset provided by scikit-learn
|
├── results/
|    ├── estimates/
|    │    └──          <- Generated estimates of classifier performance
|    └── figures/
|         └──          <- Generated figures
|
├── scrips/
|    ├── load_data.py                       <- Downloads the dataset to specified 'data-path'
|    ├── evaluate_hyper_params_effect.py    <- Runs cross-validated hyper-parameter evaluation
|    ├── plot_hyper_params_effect.py        <- Summarizes results of evaluation in a figure
|    └── run_analysis.sh                    <- Runs all analysis steps
|
└── src/
    ├── hyper/
    │    ├──  __init__.py                   <- Makes 'hyper' a Python module
    │    ├── grid.py                        <- Functionality to sample hyper-parameter grid
    │    ├── evaluation.py                  <- Functionality to evaluate classifier performance, given hyper-parameters
    │    └── plotting.py                    <- Functionality to visualize results
    └── setup.py                            <- Makes 'hyper' pip-installable (pip install -e .)  

Data description

We use the handwritten digits dataset provided by scikit-learn. For details on this dataset, see scikit-learn's documentation:

https://scikit-learn.org/stable/datasets/toy_dataset.html#digits-dataset

Installation

This project is written for Python 3.9.5 (we recommend pyenv for Python version management).

All software dependencies of this project are managed with Python Poetry. All details about the used package versions are provided in pyproject.toml.

To clone this repository to your local machine, run:

git clone https://github.com/athms/reproducible-modelling

To install all dependencies with poetry, run:

cd reproducible-modelling/
poetry install

To reproduce our analyses, you additionally need to install our custom Python module (src/hyper) in your poetry environment:

cd src/
poetry run pip install -e .

Reproducing our analysis

Our analysis can be reproduced either by running scripts/run_analysis.sh:

cd scripts
poetry run bash run_analysis.sh

..or by the use of make:

poetry run make <ANALYSIS TARGET>

We provide the following targets for make:

Analysis target Description
all Runs the entire analysis pipeline
load Downloads scikit-learn's handwritten digit dataset
evaluate Runs our cross-validated hyper-parameter evaluation
plot Creates our results figure

This README file is strongly inspired by the Cookiecutter Data Science Structure

Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022