Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Related tags

Deep Learninglorien
Overview

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Build Status codecov.io

Lorien is an infrastructure to massively explore/benchmark the best schedules of given deep learning models. Lorien is deep learning compiler (DLC) agnostic, so one can easily implement a Lorien dialect to support a new DLC.

Motivation

Although auto-tuning frameworks for deep learning compilers (e.g., TVM, Halide) are capable of delivering high-performance operators that match or even beat vendor kernel libraries, auto-tuning a deep learning model could take days or even weeks, especially for the model with many workloads like ResNet-152 or Inception V3.

With such a long tuning time, one key question To maintain the best user experience during deep model developments and deployments is How to promptly deliver schedules with reasonably good performance upon user requests? Accordingly, we design and implement Lorien to remove the following obstacles:

  1. Tuning Process Scalability and Stability. Long tuning time affects not only the time-to-market but the stability. To the best of our knowledge, none of existing auto-tuning frameworks is designed for tuning on multiple machines, and none of them consider fault tolerance. The tuning process, hence, has to be manually started over if it was accidentally interrupted. This is crucial especially on edge devices, which are less reliable than cloud instances and may fail frequently due to overheat or other factors.

  2. Tuning Result Management. Although almost all auto-tuning frameworks provide mechanisms to serialize tuning results for future applications, all of them use file-based mechanism and have different formats. As a result, engineers have additional work to orchestrate the data for efficient usage.

  3. Time to Deliver an Efficient Schedule. Even a database is constructed to serve most user requests, it is still possible that certain workloads are missing. However, modern auto-tuning frameworks usually leverage iterative search algorithms with on-device measurements, which usually take hours, to find an efficient schedule for an unseen workload. The unfavorably expensive querying/tuning overhead makes production deployment impractical.

Lorien is a unified and extensible infrastructure for delivering efficient deep learning workloads upon requests. Lorien allows auto-tuning deep learning frameworks to be easily plugged in as dialects, and supports large scale tuning on both cloud and edge platforms. The tuning results are managed in a NoSQL database with a unified data model that fits all auto-tuning frameworks. While the best schedules managed in the database can be used to compile deep learning models to achieve high performance, the tuning logs managed in a file system can also 1) enable more comprehensive performance analysis on different platforms, and 2) help train a performance cost model with an AutoML solution.

Please visit the official documentations for setup guideline and tutorials.

System Requirements

  • Python 3.6+

  • Amazon DynamoDB (local or aws): DynamoDB is used for storing and maintain the tuned schedules. You can choose to either of the following:

    1. Launch a local version using JVM on your machine, and specify endpoint URL (e.g. --db "endpoint_url: http://:8000") when invoking a tuning procses.

    2. Configure AWS credential on your machine to directly use AWS DynamoDB service. In this case, you do not have to specify any argument in tuning configurations.

  • AWS S3 (optional): S3 is used to store the full tuning logs (JSON files generated by AutoTVM). If you specify --commit-log-to bucket_name and configure an AWS credential on your machine, then all complete tuning logs will be uploaded to the S3 bucket for debugging or research prupose. Note that this is an optional requirement, so you can ignore the --commit-log-to argument if you do not want to keep full tuning logs.

  • AWS Batch (AWS ECR): You have to set up AWS batch computation environments, job queues, and job definitions in advance to use Lorien AWS batch worker for tuning. See this blog post for reference. You may also need to build an upload Lorien docker images to AWS ECR as the AWS batch job running container.

Docker Images

You can directly make use of pre-built Lorien docker images on Docker Hub, which includes two typs of images for CPU and CPU+CUDA platforms. The docker images have TVM deployed so you can launch a tuning process in the container after cloning Lorien. The docker image is also used for Lorien CI purpose.

Documentation

https://awslabs.github.io/lorien/

Citing Lorien

If you use Lorien in a scientific publication, please cite the following paper:

Cody Hao Yu, Xingjian Shi, Haichen Shen, Zhi Chen, Mu Li, Yida Wang, "Lorien: Efficient Deep Learning Workloads Delivery", Proceedings of the 12th ACM Symposium on Cloud Computing. 2021.

@inproceedings{yu2021lorien,
  title={Lorien: Efficient Deep Learning Workloads Delivery},
  author={Yu, Cody Hao and Shi, Xingjian and Shen, Haichen and Chen, Zhi and Li, Mu and Wang, Yida},
  booktitle={Proceedings of the Seventh ACM Symposium on Cloud Computing},
  year={2021}
}
Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022