A curated list of awesome Active Learning

Overview

Awesome Active Learning Awesome

🤩 A curated list of awesome Active Learning ! 🤩

Background

(image source: Settles, Burr)

What is Active Learning?

Active learning is a special case of machine learning in which a learning algorithm can interactively query a oracle (or some other information source) to label new data points with the desired outputs.

(image source: Settles, Burr)

There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the oracle for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) context, combining concepts from the field of machine learning (e.g. conflict and ignorance) with adaptive, incremental learning policies in the field of online machine learning.

(source: Wikipedia)

Contributing

If you find the awesome paper/code/book/tutorial or have some suggestions, please feel free to pull requests or contact [email protected] to add papers using the following Markdown format:

Year | Paper Name | Conference | [Paper](link) | [Code](link) | Tags | Notes |

Thanks for your valuable contribution to the research community. 😃

Table of Contents

Books

Surveys

Papers

Tags

Sur.: survey | Cri.: critics | Pool.: pool-based sampling | Str.: stream-based sampling | Syn.: membership query synthesize | Meta.: meta learning | SSL.: semi-supervised learning | RL.: reinforcement learning | FS.: few-shot learning | SS.: self-supervised |

Before 2017

Year Title Conf Paper Code Tags Notes
1994 Improving Generalization with Active Learning Machine Learning paper
2007 Discriminative Batch Mode Active Learning NIPS paper
2008 Active Learning with Direct Query Construction KDD paper
2008 An Analysis of Active Learning Strategies for Sequence Labeling Tasks EMNLP paper
2008 Hierarchical Sampling for Active Learning ICML paper
2010 Active Instance Sampling via Matrix Partition NIPS paper
2011 Ask Me Better Questions: Active Learning Queries Based on Rule Induction KDD paper
2011 Active Learning from Crowds ICML paper
2011 Bayesian Active Learning for Classification and Preference Learning CoRR paper
2011 Active Learning Using On-line Algorithms KDD paper
2012 Bayesian Optimal Active Search and Surveying ICML paper
2012 Batch Active Learning via Coordinated Matching ICML paper
2013 Active Learning for Multi-Objective Optimization ICML paper
2013 Active Learning for Probabilistic Hypotheses Usingthe Maximum Gibbs Error Criterion NIPS paper
2014 Active Semi-Supervised Learning Using Sampling Theory for Graph Signals KDD paper
2014 Beyond Disagreement-based Agnostic Active Learning NIPS paper
2016 Cost-Effective Active Learning for Deep Image Classification TCSVT paper
2016 Active Image Segmentation Propagation CVPR paper

2017

Title Conf Paper Code Tags Notes
Active Decision Boundary Annotation with Deep Generative Models ICCV paper
Active One-shot Learning CoRR paper code Str. RL. FS.
A Meta-Learning Approach to One-Step Active-Learning [email protected]/ECML paper Pool. Meta.
Generative Adversarial Active Learning arXiv paper Pool. Syn.
Active Learning from Peers NIPS paper
Learning Active Learning from Data NIPS paper code Pool.
Learning Algorithms for Active Learning ICML paper
Deep Bayesian Active Learning with Image Data ICML paper code Pool.

2018

Title Conf Paper Code Tags Notes
The Power of Ensembles for Active Learning in Image Classification CVPR paper
Adversarial Learning for Semi-Supervised Semantic Segmentation BMVC paper code Pool. SSL.
A Variance Maximization Criterion for Active Learning Pattern Recognition paper
Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning ICLR-WS paper Pool. Meta. RL.
Active Learning for Convolutional Neural Networks: A Core-Set Approach ICLR paper
Adversarial Active Learning for Sequence Labeling and Generation IJCAI paper
Meta-Learning for Batch Mode Active Learning ICLR-WS paper

2019

Title Conf Paper Code Tags Notes
ViewAL: Active Learning with Viewpoint Entropy for Semantic Segmentation CVPR paper Pool.
Bayesian Generative Active Deep Learning ICML paper code Pool. Semi.
Variational Adversarial Active Learning ICCV paper code Pool. SSL.
Integrating Bayesian and Discriminative Sparse Kernel Machines for Multi-class Active Learning NeurIPS paper
Active Learning via Membership Query Synthesisfor Semi-supervised Sentence Classification CoNLL paper
Discriminative Active Learning arXiv paper
Semantic Redundancies in Image-Classification Datasets: The 10% You Don’t Need arXiv paper
Bayesian Batch Active Learning as Sparse Subset Approximation NIPS paper
Learning Loss for Active Learning CVPR paper code Pool.
Rapid Performance Gain through Active Model Reuse IJCAI paper
Parting with Illusions about Deep Active Learning arXiv paper Cri.
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning NIPS paper

2020

Title Conf Paper Code Tags Notes
Reinforced active learning for image segmentation ICLR paper code Pool. RL.
[BADGE] Batch Active learning by Diverse Gradient Embeddings ICLR paper code Pool.
Adversarial Sampling for Active Learning WACV paper Pool.
Online Active Learning of Reject Option Classifiers AAAI paper
Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision CVPR paper
Deep Reinforcement Active Learning for Medical Image Classification MICCAI paper Pool. RL.
State-Relabeling Adversarial Active Learning CVPR paper code Pool.
Towards Robust and Reproducible Active Learning Using Neural Networks arXiv paper Cri.
Consistency-Based Semi-supervised Active Learning: Towards Minimizing Labeling Cost ECCV paper Pool. SSL.

2021

Title Conf Paper Code Tags Notes
MedSelect: Selective Labeling for Medical Image Classification Combining Meta-Learning with Deep Reinforcement Learning arXiv paper Pool. Meta. RL.
Can Active Learning Preemptively Mitigate Fairness Issues ICLR-RAI paper code Pool. Thinking fairness issues
Sequential Graph Convolutional Network for Active Learning CVPR paper code Pool.
Task-Aware Variational Adversarial Active Learning CVPR paper code Pool.
Effective Evaluation of Deep Active Learning on Image Classification Tasks arXiv paper Cri.
Semi-Supervised Active Learning for Semi-Supervised Models: Exploit Adversarial Examples With Graph-Based Virtual Labels ICCV paper Pool. SSL.
Contrastive Coding for Active Learning under Class Distribution Mismatch ICCV paper code Pool. Defines a good question
Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering ACL-IJCNLP paper code Pool. Thinking about outliers
LADA: Look-Ahead Data Acquisition via Augmentation for Active Learning NeurIPS paper Pool.
Multi-Anchor Active Domain Adaptation for Semantic Segmentation ICCV paper code Pool.
Active Learning for Lane Detection: A Knowledge Distillation Approach ICCV paper Pool.
Active Contrastive Learning of Audio-Visual Video Representations ICLR paper code Pool.
Multiple instance active learning for object detection CVPR paper code Pool.
SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency NeurIPS paper Robot exploration
Influence Selection for Active Learning ICCV paper code Pool.
Reducing Label Effort: Self-Supervised meets Active Learning arXiv paper Pool. SS. Cri. A meaningful attempt on the combination of SS & AL

Turtorials

Tools

Owner
BAI Fan
Deep Learning, Active Learning, Robotics, Artificial Intelligence.
BAI Fan
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022