Workshop Materials Delivered on 28/02/2022

Overview

intro-to-cnn-p1

Repo for hosting workshop materials delivered on 28/02/2022

Questions you will answer in this workshop

Learning Objectives

  • What are convolutional layers and how do Convolutional Neural Networks Work (CNNs)
  • Introduction to CNN classifiers, object detectors, and Semantic Segmentation
  • Learn to convert a fully dense network to a CNN in TensorFlow to improve the performance of image classifiers
  • A quick look into Object detection CNNs
  • Learn how to design CNNs for your AI application

What will I learn during this workshop

Prerequisites

In this training, we will approach the problem from the ground up. Reviewing how CNNs work without getting bogged down into the detail and getting some models training as fast as possible. The workshop materials will be delivered in a combination of coding exercises and lectures.

Steps

This workshop consists of the following activities:

Slides

You can access the slides here

Setup

  1. Clone this git repository using git clone https://github.com/beginners-machine-learning-london/intro-to-cnn-p1
  2. Open the project in your IDE such as Pycharm
  3. Run the following command to install the required packages (Learn more about python virtual environments here):
    1. Create the environment using python -m venv venv
    2. Activate the environment using source venv/bin/activate
    3. Install the required packages using pip install -r requirements.txt

Featured technologies

  • Python: Python is a programming language that lets you work more quickly and integrate your systems more effectively.
  • Tensorflow: A deep learning framework by Google (used in most production environments).
  • Keras: A high-level API for Tensorflow.
  • OpenCV: Open source computer vision library for computer vision and image processing.
  • Matplotlib: A library for plotting graphs and images in Python.
  • Numpy: A library for scientific computing with Python.

Dataset Source

  • The Fashion MNIST datasets are provided as part of the deep learning framework Tensorflow under the MIT license.
  • The dataset consists of 60,000 28x28 grayscale images of 10 classes: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot.
  • The images are divided into train and test sets. The training set contains 60,000 images. The test set contains 10,000 images.
  • This dataset is used in this workshop to train a CNN.
  • The images are 28x28 grayscale images.
  • The labels are one-hot encoded.
  • The training set is used to train the model and The test set is used to evaluate the model.

Learn More

Collaboration, Questions and Discussions

  • BML Slack Channel - Join our slack workspace to collaborate with others, discuss ideas and post any questions you have about our group or the workshops
  • Have questions about workshop exercises or setting up your AWS account and configurations? Post them here

Workshop Feedback

  • How was this workshop? Please provide us with some feedback here so that we can improve the content and delivery of future workshops.
Owner
Beginners Machine Learning
Content hub for hands-on machine learning workshops.
Beginners Machine Learning
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023