Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

Related tags

Deep LearningxTune
Overview

xTune

Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

Environment

DockerFile: dancingsoul/pytorch:xTune

Install the fine-tuning code: pip install --user .

Data & Model Preparation

XTREME Datasets

  1. Create a download folder with mkdir -p download in the root of this project.
  2. manually download panx_dataset (for NER) [here][2], (note that it will download as AmazonPhotos.zip) to the download directory.
  3. run the following command to download the remaining datasets: bash scripts/download_data.sh The code of downloading dataset from XTREME is from [xtreme offical repo][1].

Note that we keep the labels in test set for easier evaluation. To prevent accidental evaluation on the test sets while running experiments, the code of [xtreme offical repo][1] removes labels of the test data during pre-processing and changes the order of the test sentences for cross-lingual sentence retrieval. Replace csv.writer(fout, delimiter='\t') with csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='') in utils_process.py if using XTREME official repo.

Translations

XTREME provides translations for SQuAD v1.1 (only train and dev), MLQA, PAWS-X, TyDiQA-GoldP, XNLI, and XQuAD, which can be downloaded from [here][3]. The xtreme_translations folder should be moved to the download directory.

The target language translations for panx and udpos are obtained with Google Translate, since they are not provided. Our processed version can be downloaded from [here][4]. It should be merged with the above xtreme_translations folder.

Bi-lingual dictionaries

We obtain the bi-lingual dictionaries from the [MUSE][6] repo. For convenience, you can download them from [here][7] and move it to the download directory, i.e., ./download/dicts.

Models

XLM-Roberta is supported. We utilize the [huggingface][5] format, which can be downloaded with bash scripts/download_model.sh.

Fine-tuning Usage

Our default settings were using Nvidia V100-32GB GPU cards. If there were out-of-memory errors, you can reduce per_gpu_train_batch_size while increasing gradient_accumulation_steps, or use multi-GPU training.

xTune consists of a two-stage training process.

  • Stage 1: fine-tuning with example consistency on the English training set.
  • Stage 2: fine-tuning with example consistency on the augmented training set and regularize model consistency with the model from Stage 1.

It's recommended to use both Stage 1 and Stage 2 for token-level tasks, such as sequential labeling, and question answering. For text classification, you can only use Stage 1 if the computation budget was limited.

bash ./scripts/train.sh [setting] [dataset] [model] [stage] [gpu] [data_dir] [output_dir]

where the options are described as follows:

  • [setting]: translate-train-all (using input translation for the languages other than English) or cross-lingual-transfer (only using English for zero-shot cross-lingual transfer)
  • [dataset]: dataset names in XTREME, i.e., xnli, panx, pawsx, udpos, mlqa, tydiqa, xquad
  • [model]: xlm-roberta-base, xlm-roberta-large
  • [stage]: 1 (first stage), 2 (second stage)
  • [gpu]: used to set environment variable CUDA_VISIBLE_DEVICES
  • [data_dir]: folder of training data
  • [output_dir]: folder of fine-tuning output

Examples: XTREME Tasks

XNLI fine-tuning on English training set and translated training sets (translate-train-all)

# run stage 1 of xTune
bash ./scripts/train.sh translate-train-all xnli xlm-roberta-base 1
# run stage 2 of xTune (optional)
bash ./scripts/train.sh translate-train-all xnli xlm-roberta-base 2

XNLI fine-tuning on English training set (cross-lingual-transfer)

# run stage 1 of xTune
bash ./scripts/train.sh cross-lingual-transfer xnli xlm-roberta-base 1
# run stage 2 of xTune (optional)
bash ./scripts/train.sh cross-lingual-transfer xnli xlm-roberta-base 2

Paper

Please cite our paper \cite{bo2021xtune} if you found the resources in the repository useful.

@inproceedings{bo2021xtune,
author = {Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang, Zewen Chi, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, Furu Wei},
booktitle = {Proceedings of ACL 2021},
title = {{Consistency Regularization for Cross-Lingual Fine-Tuning}},
year = {2021}
}

Reference

  1. https://github.com/google-research/xtreme
  2. https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1
  3. https://console.cloud.google.com/storage/browser/xtreme_translations
  4. https://drive.google.com/drive/folders/1Rdbc0Us_4I5MpRCwLASxBwqSW8_dlF87?usp=sharing
  5. https://github.com/huggingface/transformers/
  6. https://github.com/facebookresearch/MUSE
  7. https://drive.google.com/drive/folders/1k9rQinwUXicglA5oyzo9xtgqiuUVDkjT?usp=sharing
Owner
Bo Zheng
Bo Zheng
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022