Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Overview

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective

Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Installing

Standard pip instal [Recommended]

TODO

If you are going to use a gpu the do this first before continuing (or check the offical website: https://pytorch.org/get-started/locally/):

pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Otherwise, just doing the follwoing should work.

pip install automl

If that worked, then you should be able to import is as follows:

import automl

Manual installation [Development]

To use library first get the code from this repo (e.g. fork it on github):

git clone [email protected]/brando90/automl-meta-learning.git

Then install it in development mode in your python env with python >=3.9 (read modules_in_python.md to learn about python envs in uutils). E.g. create your env with conda:

conda create -n metalearning python=3.9
conda activate metalearning

Then install it in edibable mode and all it's depedencies with pip in the currently activated conda environment:

pip install -e ~/automl-meta-learning/automl-proj-src/

since the depedencies have not been written install them:

pip install -e ~/ultimate-utils/ultimate-utils-proj-src

then test as followsing:

python -c "import uutils; print(uutils); uutils.hello()"
python -c "import meta_learning; print(meta_learning)"
python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

output should be something like this:

hello from uutils __init__.py in: (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)" (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()" hello from torch_uu __init__.py in: ">
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import uutils; print(uutils); uutils.hello()"

       
        

hello from uutils __init__.py in:

        
         

(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)"

         
          
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

          
           

hello from torch_uu __init__.py in:

            
           
          
         
        
       

Reproducing Results

TODO

Citation

B. Miranda, Y.Wang, O. Koyejo.
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective. 
(Planned Release Date December 2021).
https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022