Contrastive Learning Inverts the Data Generating Process

Overview

Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

3DIdent dataset example images

Experiments

To reproduce the disentanglement results for the MLP mixing, use the main_mlp.py script. For the experiments on KITTI Masks use the main_kitti.py script. For those on 3DIdent, use main_3dident.py.

MLP Mixing

> python main_mlp.py --help
usage: main_mlp.py
       [-h] [--sphere-r SPHERE_R] [--box-min BOX_MIN] [--box-max BOX_MAX]
       [--sphere-norm] [--box-norm] [--only-supervised] [--only-unsupervised]
       [--more-unsupervised MORE_UNSUPERVISED] [--save-dir SAVE_DIR]
       [--num-eval-batches NUM_EVAL_BATCHES] [--rej-mult REJ_MULT]
       [--seed SEED] [--act-fct ACT_FCT] [--c-param C_PARAM]
       [--m-param M_PARAM] [--tau TAU] [--n-mixing-layer N_MIXING_LAYER]
       [--n N] [--space-type {box,sphere,unbounded}] [--m-p M_P] [--c-p C_P]
       [--lr LR] [--p P] [--batch-size BATCH_SIZE] [--n-log-steps N_LOG_STEPS]
       [--n-steps N_STEPS] [--resume-training]

Disentanglement with InfoNCE/Contrastive Learning - MLP Mixing

optional arguments:
  -h, --help            show this help message and exit
  --sphere-r SPHERE_R
  --box-min BOX_MIN     For box normalization only. Minimal value of box.
  --box-max BOX_MAX     For box normalization only. Maximal value of box.
  --sphere-norm         Normalize output to a sphere.
  --box-norm            Normalize output to a box.
  --only-supervised     Only train supervised model.
  --only-unsupervised   Only train unsupervised model.
  --more-unsupervised MORE_UNSUPERVISED
                        How many more steps to do for unsupervised compared to
                        supervised training.
  --save-dir SAVE_DIR
  --num-eval-batches NUM_EVAL_BATCHES
                        Number of batches to average evaluation performance at
                        the end.
  --rej-mult REJ_MULT   Memory/CPU trade-off factor for rejection resampling.
  --seed SEED
  --act-fct ACT_FCT     Activation function in mixing network g.
  --c-param C_PARAM     Concentration parameter of the conditional
                        distribution.
  --m-param M_PARAM     Additional parameter for the marginal (only relevant
                        if it is not uniform).
  --tau TAU
  --n-mixing-layer N_MIXING_LAYER
                        Number of layers in nonlinear mixing network g.
  --n N                 Dimensionality of the latents.
  --space-type {box,sphere,unbounded}
  --m-p M_P             Type of ground-truth marginal distribution. p=0 means
                        uniform; all other p values correspond to (projected)
                        Lp Exponential
  --c-p C_P             Exponent of ground-truth Lp Exponential distribution.
  --lr LR
  --p P                 Exponent of the assumed model Lp Exponential
                        distribution.
  --batch-size BATCH_SIZE
  --n-log-steps N_LOG_STEPS
  --n-steps N_STEPS
  --resume-training

KITTI Masks

>python main_kitti.py --help
usage: main_kitti.py [-h] [--box-norm BOX_NORM] [--p P] [--experiment-dir EXPERIMENT_DIR] [--evaluate] [--specify SPECIFY] [--random-search] [--random-seeds] [--seed SEED] [--beta BETA] [--gamma GAMMA]
                     [--rate-prior RATE_PRIOR] [--data-distribution DATA_DISTRIBUTION] [--rate-data RATE_DATA] [--data-k DATA_K] [--betavae] [--search-beta] [--output-dir OUTPUT_DIR] [--log-dir LOG_DIR]
                     [--ckpt-dir CKPT_DIR] [--max-iter MAX_ITER] [--dataset DATASET] [--batch-size BATCH_SIZE] [--num-workers NUM_WORKERS] [--image-size IMAGE_SIZE] [--use-writer] [--z-dim Z_DIM] [--lr LR]
                     [--beta1 BETA1] [--beta2 BETA2] [--ckpt-name CKPT_NAME] [--log-step LOG_STEP] [--save-step SAVE_STEP] [--kitti-max-delta-t KITTI_MAX_DELTA_T] [--natural-discrete] [--verbose] [--cuda]
                     [--num_runs NUM_RUNS]

Disentanglement with InfoNCE/Contrastive Learning - KITTI Masks

optional arguments:
  -h, --help            show this help message and exit
  --box-norm BOX_NORM
  --p P
  --experiment-dir EXPERIMENT_DIR
                        specify path
  --evaluate            evaluate instead of train
  --specify SPECIFY     use argument to only compute a subset of metrics
  --random-search       whether to random search for params
  --random-seeds        whether to go over random seeds with UDR params
  --seed SEED           random seed
  --beta BETA           weight for kl to normal
  --gamma GAMMA         weight for kl to laplace
  --rate-prior RATE_PRIOR
                        rate (or inverse scale) for prior laplace (larger -> sparser).
  --data-distribution DATA_DISTRIBUTION
                        (laplace, uniform)
  --rate-data RATE_DATA
                        rate (or inverse scale) for data laplace (larger -> sparser). (-1 = rand).
  --data-k DATA_K       k for data uniform (-1 = rand).
  --betavae             whether to do standard betavae training (gamma=0)
  --search-beta         whether to do rand search over beta
  --output-dir OUTPUT_DIR
                        output directory
  --log-dir LOG_DIR     log directory
  --ckpt-dir CKPT_DIR   checkpoint directory
  --max-iter MAX_ITER   maximum training iteration
  --dataset DATASET     dataset name (dsprites, cars3d,smallnorb, shapes3d, mpi3d, kittimasks, natural
  --batch-size BATCH_SIZE
                        batch size
  --num-workers NUM_WORKERS
                        dataloader num_workers
  --image-size IMAGE_SIZE
                        image size. now only (64,64) is supported
  --use-writer          whether to use a log writer
  --z-dim Z_DIM         dimension of the representation z
  --lr LR               learning rate
  --beta1 BETA1         Adam optimizer beta1
  --beta2 BETA2         Adam optimizer beta2
  --ckpt-name CKPT_NAME
                        load previous checkpoint. insert checkpoint filename
  --log-step LOG_STEP   numer of iterations after which data is logged
  --save-step SAVE_STEP
                        number of iterations after which a checkpoint is saved
  --kitti-max-delta-t KITTI_MAX_DELTA_T
                        max t difference between frames sampled from kitti data loader.
  --natural-discrete    discretize natural sprites
  --verbose             for evaluation
  --cuda
  --num_runs NUM_RUNS   when searching over seeds, do 10

3DIdent

>python main_3dident.py --help
usage: main_3dident.py [-h] [--batch-size BATCH_SIZE] [--n-eval-samples N_EVAL_SAMPLES] [--lr LR] [--optimizer {adam,sgd}] [--iterations ITERATIONS]
                                                                   [--n-log-steps N_LOG_STEPS] [--load-model LOAD_MODEL] [--save-model SAVE_MODEL] [--save-every SAVE_EVERY] [--no-cuda] [--position-only]
                                                                   [--rotation-and-color-only] [--rotation-only] [--color-only] [--no-spotlight-position] [--no-spotlight-color] [--no-spotlight]
                                                                   [--non-periodic-rotation-and-color] [--dummy-mixing] [--identity-solution] [--identity-mixing-and-solution]
                                                                   [--approximate-dataset-nn-search] --offline-dataset OFFLINE_DATASET [--faiss-omp-threads FAISS_OMP_THREADS]
                                                                   [--box-constraint {None,fix,learnable}] [--sphere-constraint {None,fix,learnable}] [--workers WORKERS]
                                                                   [--mode {supervised,unsupervised,test}] [--supervised-loss {mse,r2}] [--unsupervised-loss {l1,l2,l3,vmf}]
                                                                   [--non-periodical-conditional {l1,l2,l3}] [--sigma SIGMA] [--encoder {rn18,rn50,rn101,rn151}]

Disentanglement with InfoNCE/Contrastive Learning - 3DIdent

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
  --n-eval-samples N_EVAL_SAMPLES
  --lr LR
  --optimizer {adam,sgd}
  --iterations ITERATIONS
                        How long to train the model
  --n-log-steps N_LOG_STEPS
                        How often to calculate scores and print them
  --load-model LOAD_MODEL
                        Path from where to load the model
  --save-model SAVE_MODEL
                        Path where to save the model
  --save-every SAVE_EVERY
                        After how many steps to save the model (will always be saved at the end)
  --no-cuda
  --position-only
  --rotation-and-color-only
  --rotation-only
  --color-only
  --no-spotlight-position
  --no-spotlight-color
  --no-spotlight
  --non-periodic-rotation-and-color
  --dummy-mixing
  --identity-solution
  --identity-mixing-and-solution
  --approximate-dataset-nn-search
  --offline-dataset OFFLINE_DATASET
  --faiss-omp-threads FAISS_OMP_THREADS
  --box-constraint {None,fix,learnable}
  --sphere-constraint {None,fix,learnable}
  --workers WORKERS     Number of workers to use (0=#cpus)
  --mode {supervised,unsupervised,test}
  --supervised-loss {mse,r2}
  --unsupervised-loss {l1,l2,l3,vmf}
  --non-periodical-conditional {l1,l2,l3}
  --sigma SIGMA         Sigma of the conditional distribution (for vMF: 1/kappa)
  --encoder {rn18,rn50,rn101,rn151}

3DIdent Dataset

We introduce 3Dident, a dataset with hallmarks of natural environments (shadows, different lighting conditions, 3D rotations, etc.). A preliminary version of the dataset is released along with our pre-print.

3DIdent dataset example images

You can access the dataset here. The training and test datasets consists of 250000 and 25000 samples, respectively. To load, you can use the ThreeDIdentDataset class defined in datasets/threedident_dataset.py.

BibTeX

If you find our analysis helpful, please cite our pre-print:

@article{zimmermann2021cl,
  author = {
    Zimmermann, Roland S. and
    Sharma, Yash and
    Schneider, Steffen and
    Bethge, Matthias and
    Brendel, Wieland
  },
  title = {
    Contrastive Learning Inverts the Data Generating Process
  },
  journal = {CoRR},
  volume = {abs/2102.08850},
  year = {2021},
}
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022