ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Related tags

Machine Learningml4h
Overview

ml4h

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more. The diverse data modalities of biomedicine offer different perspectives on the underlying challenge of understanding human health. For this reason, ml4h is built on a foundation of multimodal multitask modeling, hoping to leverage all available data to help power research and inform clinical care. Our tools help apply clinical research standards to ML models by carefully considering bias and longitudinal outcomes. Our project grew out of efforts at the Broad Institute to make it easy to work with the UK Biobank on the Google Cloud Platform and has since expanded to include proprietary data from academic medical centers. To put cutting-edge AI and ML to use making the world healthier, we're fostering interdisciplinary collaborations across industry and academia. We'd love to work with you too!

ml4h is best described with Five Verbs: Ingest, Tensorize, TensorMap, Model, Evaluate

  • Ingest: collect files onto one system
  • Tensorize: write raw files (XML, DICOM, NIFTI, PNG) into HD5 files
  • TensorMap: tag data (typically from an HD5) with an interpretation and a method for generation
  • ModelFactory: connect TensorMaps with a trainable architectures
  • Evaluate: generate plots that enable domain-driven inspection of models and results

Getting Started

Advanced Topics:

  • Tensorizing Data (going from raw data to arrays suitable for modeling, in ml4h/tensorize/README.md, TENSORIZE.md )

Setting up your local environment

Clone the repo

git clone [email protected]:broadinstitute/ml.git

Setting up your cloud environment (optional; currently only GCP is supported)

Make sure you have installed the Google Cloud SDK (gcloud). With Homebrew, you can use

brew cask install google-cloud-sdk

gcloud config set project your-gcp-project

Conda (Python package manager)

  • Download onto your laptop the Miniconda bash or .pkg installer for Python 3.7 and Mac OS X from here, and run it. If you installed Python via a package manager such as Homebrew, you may want to uninstall that first, to avoid potential conflicts.

  • On your laptop, at the root directory of your ml4h GitHub clone, load the ml4h environment via

    conda env create -f env/ml4h_osx64.yml
    

    If you get an error, try updating your Conda via

    sudo conda update -n base -c defaults conda
    

    If you have get an error while installing gmpy, try installing gmp:

    brew install gmp
    

    The version used at the time of this writing was 4.6.1.

    If you plan to run jupyter locally, you should also (after you have conda activate ml4h, run pip install ~/ml (or wherever you have stored the repo)

  • Activate the environment:

    source activate ml4h
    

You may now run code on your Terminal, like so

python recipes.py --mode ...

Note that recipes require having the right input files in place and running them without proper inputs will not yield meaningful results.

PyCharm (Python IDE if interested)

  • Install PyCharm either directly from here, or download the Toolbox App and have the app install PyCharm. The latter makes PyCharm upgrades easier. It also allows you to manage your JetBrains IDEs from a single place if you have multiple (e.g. IntelliJ for Java/Scala).
  • Launch PyCharm.
  • (Optional) Import the custom settings as described here.
  • Open the project on PyCharm from the File menu by pointing to where you have your GitHub repo.
  • Next, configure your Python interpreter to use the Conda environment you set up previously:
    • Open Preferences from PyCharm -> Preferences....
    • On the upcoming Preferences window's left-hand side, expand Project: ml4h if it isn't already.
    • Highlight Project Interpreter.
    • On the right-hand side of the window, where it says Project Interpreter, find and select your python binary installed by Conda. It should be a path like ~/conda/miniconda3/envs/ml4h/bin/python where conda is the directory you may have selected when installing Conda.
    • For a test run:
      • Open recipes.py (shortcut Shift+Cmd+N if you imported the custom settings).
      • Right-click on if __name__=='__main__' and select Run recipes.
      • You can specify input arguments by expanding the Parameters text box on the window that can be opened using the menu Run -> Edit Configurations....

Setting up a remote VM

To create a VM without a GPU run:

./scripts/vm_launch/launch_instance.sh ${USER}-cpu

With GPU (not recommended unless you need something beefy and expensive)

./scripts/vm_launch/launch_dl_instance.sh ${USER}-gpu

This will take a few moments to run, after which you will have a VM in the cloud. Remember to shut it off from the command line or console when you are not using it!

Now ssh onto your instance (replace with proper machine name, note that you can also use regular old ssh if you have the external IP provided by the script or if you login from the GCP console)

gcloud --project your-gcp-project compute ssh ${USER}-gpu --zone us-central1-a

Next, clone this repo on your instance (you should copy your github key over to the VM, and/or if you have Two-Factor authentication setup you need to generate an SSH key on your VM and add it to your github settings as described here):

git clone [email protected]:broadinstitute/ml.git

Because we don't know everyone's username, you need to run one more script to make sure that you are added as a docker user and that you have permission to pull down our docker instances from GCP's gcr.io. Run this while you're logged into your VM:

./ml/scripts/vm_launch/run_once.sh

Note that you may see warnings like below, but these are expected:

WARNING: Unable to execute `docker version`: exit status 1
This is expected if `docker` is not installed, or if `dockerd` cannot be reached...
Configuring docker-credential-gcr as a registry-specific credential helper. This is only supported by Docker client versions 1.13+
/home/username/.docker/config.json configured to use this credential helper for GCR registries

You need to log out after that (exit) then ssh back in so everything takes effect.

Finish setting up docker, test out a jupyter notebook

Now let's run a Jupyter notebook. On your VM run:

${HOME}/ml/scripts/jupyter.sh -p 8889

Add a -c if you want a CPU version.

This will start a notebook server on your VM. If you a Docker error like

docker: Error response from daemon: driver failed programming external connectivity on endpoint agitated_joliot (1fa914cb1fe9530f6599092c655b7036c2f9c5b362aa0438711cb2c405f3f354): Bind for 0.0.0.0:8888 failed: port is already allocated.

overwrite the default port (8888) like so

${HOME}/ml/scripts/dl-jupyter.sh 8889

The command also outputs two command lines in red. Copy the line that looks like this:

ssh -i ~/.ssh/google_compute_engine -nNT -L 8888:localhost:8888 

Open a terminal on your local machine and paste that command.

If you get a public key error run: gcloud compute config-ssh

Now open a browser on your laptop and go to the URL http://localhost:8888

Contributing code

Want to contribute code to this project? Please see CONTRIBUTING for developer setup and other details.

Command line interface

The ml4h package is designed to be accessable through the command line using "recipes". To get started, please see RECIPE_EXAMPLES.

Owner
Broad Institute
Broad Institute of MIT and Harvard
Broad Institute
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
SPCL 48 Dec 12, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023