An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

Overview

WordleSolver

An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

How to use the program


Copy this project with git clone and run python3 solver.py in the terminal.

When you run the program, the algorithm will provide you with an educated guess. Then, you type the guess into Wordle. Once you get the result of how many letters were right, you input it back into the program and will get another guess back. This process will continue until you have solved the puzzle!

Inputting the result of your guesses is easy. If a character is gray, enter '_', if a character is yellow, enter the lowercase letter, and if a character is green, enter the uppercase letter. For example, if the program told you to guess "aeros" and the result of the guess was:

image

You would enter the result as: __r__

Here is another example:

image

You would enter the result as: DR_k_

How the algorithm works

Here's a quick run-down of how the algorithm works. We keep a list of words that the answer can be and keep removing from the list until only one word remains or we guess the right answer. Each word has a unique number associated with it. We can use this number to quickly determine if a word can be an answer based on the results of other guesses. If a word cannot be the answer, it will be removed from our list. The key to the accuracy and efficiency of this algorithm is how this unique number is generated.

The number is the product of a few prime numbers which lets us use modular arithmetic in a clever way! Each letter will have 6 prime numbers associated with it. One "yellow" number and five "green" numbers. We use the one yellow number when we know a letter is in the word but we don't know where. We use one of the green letters when we know that a letter is in a specific spot. You can see these prime numbers in charDict.json. To actually calculate the number of a word, we multiply all the yellow numbers of the characters that make up the word together as well as certain green numbers. The green number we multiply depends on the position the letter appears. If the letter D appears in the first spot, we multiply by its 1st green number. If it was instead in the last spot of the word, we multiply by its 5th green number. The reason we do this is we can utilize modulo to check if a certain word can be an answer based on the result of another guess. For example, if we guessed "aeros" and the word we were trying to find was "drink", we will find that r is somewhere in the word but not in the third spot. Let us say a word has number n. If n%r's yellow number does not equal 0, then we know that word cannot be zero and we can remove it from the list. Also, if n%r's third green number equals 0, we know that it cannot be the answer because r cannot be in the third spot. Similar logic is applied when multiple letters are yellow or some letters come up green. The value of each word does not change, so we can process this information once and store it in a txt file to be used later which is what I did in wordList.txt! If you would like to use a different set of words than what I used, feel free to change the words.txt file and run process.py to generate a new wordList file.

Optimizations

One way to make the algorithm take fewer guesses is to make smarter guesses. As such, an optimization I decided to make is to take into account letter frequency. Letters that appear more often have lower prime numbers associated with them and also that the word that is guessed always has the smallest number associated with it. Now, the primes associated with each letter aren't just chosen arbitrarily and actually tell us some information. "e" is the most common letter and as such has the six smallest prime numbers. I can sort the wordlist and make the algorithm guess the word with the smallest number. So, our algorithm is more likely to guess a word with "e" in it than "q" since words with "e" will probably be smaller. This is good because "e" is much more likely to be in the word than "q". Also, I only need to sort the list once in process.py so there is no significant performance hit!

A drawback of this approach is that words that are made up of repetitive common letters have very low values and are guessed much more. This is not good because words with repeating letters make it harder to narrow down our potential guesses! For example, consider the word "esses" which is made up of only of the two most common letters. It's good that our guesses consist of letters that are common but it is bad that we only get information about two different letters. The way I fixed this is by multiplying words that have characters repeated two or three times by a much bigger prime number so they are weighed down and guesses less often.

Another optimization I made is taking into account how common a word is. There are a lot of niche words in the list that are very rarely used which are likely not the answer to the puzzle. So, once I've narrowed down the possible words to less than a hundred, it makes sense to guess the more common words first. This is why I introduced a second number that is associated which each word. The second number is the frequency of a word in Wikipedia articles. Once there are less than 100 words in the list, the list is resorted by this second number rather than the first and so each guess will be the most common word remaining!

Further Optimizations

As I mentioned before, one of the optimizations I made was having more common letters correspond with smaller prime numbers and sorting the list of words based on the number associated with each word. This is all done just once for each set of words in process.py and is very computationally efficient. However, if more accuracy is desired, the prime number associated with each letter can be re-generated after each guess because the frequency of each letter is likely to change. This may increase accuracy slightly but will take much longer to process which is why I opted against it. After each guess, I would have to re-check the frequency of each letter, calculate the value of each word, and then resort to the entire list based on this new value.

Sources

  • Wordle is by PowerLanguage
  • List of 5 letter words is based on SOWPODS and was taken from Word Game Dictionary. I suspect that PowerLanguage used the same source for wordle as he used a similar source for another project.
  • The frequency of words was taken from lexepedia with a minimum frequency of 1, length of 5, and only includes Wiktionary Words.
Owner
Akil Selvan Rajendra Janarthanan
yo!
Akil Selvan Rajendra Janarthanan
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank li

Tae-Hwan Jung 11.9k Jan 08, 2023
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023