MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Overview

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Mediapipe, Google tarafından oluşturulan makine öğrenimi çözümleri oluşturmak kullandığımız açık kaynaklı bir frameworktür. MediaPipe modüler yapısı sayesinde bize kullanımı kolay ve hızlı uygulanabilir bir yapı sunuyor. Bir çok platformda kullanılmasıda büyük bir avantaj sağlıyor.
Aşağıdak resimde mediapipe ile oluşturabileceğimiz bazı modeller bulunuyor. Bunları ayrıca incelemek için https://google.github.io/mediapipe/ adresini ziyaret edebilirsiniz. image

Burada bulunan çözümleri kullanarak bizde Hand,Face Detection, Face Mesh, Pose modelleri oluşturacağız. Bunları daha sonra kullanmak için modüler bir yapı kullanacağız. Adım adım ilerleyelim.

Kullanacağımız Kütüphaneler

MediaPipe kütüphanesini yüklemek için terminale "pip install mediapipe" yazabilirsiniz. Bununlar birlikte videolardan üzerinde yapacağımız işlemleri de opencv kütüphanesi ile yapacağız. OpenCV kurmak içinde pip install opencv-python yazabilirsiniz.

Hands

image
Elin şeklini ve hareketleri anlamak için bu modülü kullanacağız. MediaPipe Hands birden fazla modelin birlikte çalışması ile oluşuyor. Burada modellerden biri Palm Detection diğeri Hand Landmarks . Palm Detection modeli elin bulunduğu kısmı keser ve Hand Landmarks modeli elde bulunan noktaları detect etmeye çalışır. Elin croplanması sayesinde Landmark modeli daha başarı bir sonuç ortaya koyar.
Aşağıdaki resimde elde tespit edilecek landmarkları görebilirsiniz. image

Modüler bir yapı oluşturmak istediğimi söylemiştim. Bu sebeple HandTracking adında bir sınıf oluşturalım. Bunu sınıf içerisinde "init" metodu ile alacağımız parametreleri belirtelim. Bu parametlerelin ayrıntılı açıklamasını "https://google.github.io/mediapipe/solutions/hands.html" adresinden öğrenebilirsiniz.

Öncelikle hands adında bir değişken oluşturalım bu değişken ile hands sınıfındaki metotlara erişebileceğiz. Daha sonra elde ettiğimiz landmarkları çizim yaparken kullanmak için mp_drawing nesnesini oluşturuyoruz. image

find() adında image ve draw parametleri alan bir fonksiyon oluşturalım. Burada image değişkeni videodan aldığımız frameleri temsil ediyor, draw değişkenine ise default olarak True değerini verdik, video üzerinde çizim göstermek istemezsek bunu False yapabiliriz.

MediaPipe alınan imagelerin RGB formatında olmasını istiyor. Biz Opencv ile okuduğumuz videoları BGR olarak okuyoruz. Bu sebeple cvtColor metodu ile imagei RGB ye çeviriyoruz. Oluşturduğumuz hands nesnesinin process metodunu kullarak handtracking işlemini başlatıyoruz. Buradan aldığımız bilgileri result değişkeninde tutuyoruz. Result değişkeni içerisinde detect edilen eller ve bu ellerin landmarkları bulunuyor.For döngüsü ile detect edilen ellerin landmarklarını alıyoruz. Tüm bu aldığımız bilgileri mp_drawing objesinin draw_landmarks metodunu kullanarak çizdiriyoruz. Burada mp_hans.HAND_CONNECTIONS ile landmarklar arasında çizgiler çekiyoruz. Daha sonra kullanmak için img döndürüyoruz. image

Hand Videos

Aşağıdak videolarda sonuçları inceleyebilirsiniz.

Pose

image

Videolar kullanarak pose tahmini ile yapılan egzersizlerin doğruluğunun kontrol edilmesi, işaret dili, vucut hareketlerimizi kullanabileceğimiz uygulamalar gibi bir çok alanda bize faydası olabilir. MediaPipe kütüphanesinde bulunan Pose sınıfıda bunu bizim için oldukça kolay hale getiriyor. 33 farklı 3 boyutlu landmarkı pose modelini kullanarak tespit edebiliyoruz.

image

Yine Hands modelinde olduğu gibi 2 farklı model bulunuyor modellerden biri landmarkların tespit edilmesi biri pose estimation yapılacak insanın tespit edilmesinde kullanıyor. Croplanan image sayesinde landmarkların yüksek doğruluk oranıyla detect edilmesi sağlanıyor.

Pose modelinde de daha sonra kullanmak için bir sınıf oluşturacağız. Modules klasörü altında Pose adında bir python dosyası oluşturalım. Bu python dosyasının içersinde "PoseDetection" adında bir sınıf oluşturalım. Burada bir çok parametre bulunuyor. Şimdilik bu parametreleri değiştirmemize gerek yok. Parametreler hakkında daha fazla bilgi almak için mediapipe sitesini ziyaret edebilirsiniz. image

Hand modeline çok benzer işlemler uygulayarak find metodumuzu oluşturuyoruz. Landmarkların birleşmesi için mp_pose.POSE_CONNECTIONS parametresini de kullanmayı unutmayalım.
image

VIDEO

Face Detection

image

Mediapipe ile face detection yapmakta oldukça hızlı ve başarılı görünüyor. Yüzde bulunan 6 farklı landmarkın tespit edileside ayrıca sağlanıyor. Bunun yanında bounding box oluşturarak yüzü bir kare içerisine alarak detection işlemini gerçekleştirebiliyoruz. Ayrıca birden fazla yüzün tespit edilemside sağlanıyor.

Burada da aynı hand ve pose kısımlarında ki detection ve drawing objelerimizi oluşturuyoruz. Yine bahsettiğim gibi modüler bir yapı olması için FaceDetectionC adında bir class oluşturdum. image

Öncelikle results.detection ile detection yapılmışmı bunu kontrol edelim. Daha sonra detect edilen yüzleri for döngüsü ile geziyoruz. Yüzün sınırlarına bir kare çizmek için bounding_box bilgisini çekiyoruz. Daha sonra kendi bounding boxımızı oluşturmak için detection dan aldığımız bilgileri imagein height ve widht değerleri ile çarpıyoruz. (detection yapılırken x,y,widht,height değerleri 0 ile 1 arasında veriliyor. Konumların tespit etmek için image'in shape değerleri ile çarpıyoruz.) Aldığımız bbox bilgisi ile cv2.rectangle ile bir kare çiziyoruz. Detection objesi içerisinde bulunan score bilgisinide putText metodu ile ekrana basabiliriz.
image

VIDEO

FACE MESH

image

Face Mesh modelini kullanarak yüzde bulunan 468 3 boyutlu noktayı tespit edebiliz. Burada aldığımız landmarklar ile bir çok işlem gerçekleştirebiliriz. Örneğin son zamanlarda çok kullanılan kamera filtrelerini bu sayede kolayca oluşturabiliriz. image

Yine aynı şekilde bir FaceMeshC adında bir sınıf oluşturalım. Bunun init metodu içerisinde gerekli parametreleri alalım. Aynı şekilde process işlemini başlatmak için gereken objeleri oluşturalım. image
Diğer modellerde yaptığımız gibi mp_draw nesnesini kullanarak çizim işlemini yapalım. image

VIDEO

SONUC Tüm bunları kullanmak için mp_models.py adında bir python dosyası oluşturalım. Burada hangi modeli kullanmak istediğimizi arg olarak verebiliriz. Örn : python mp_models.py hand ile hand detector çalışır ve gönderdiğimiz video üzerinde detect işlemi yapılır daha sonra bu video processed_videos klasörüne kaydedilir. image

which() metoduna argument olarak hangi model adı ilgili sınıftan bir obje oluşturulur. Bu detector objesi ve video show() metoduna gönderilir.

image

show metodunda ise opencv de buluanan VideoCapture metodu ile okunur. İlgili sınıfında find metoduna image gönderilir detection işlemi yapılan ve dönen video kaydedilir.

Owner
Burak Bagatarhan
Burak Bagatarhan
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022