This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python

Overview

PyJava

This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python. PyJava introduces Apache Arrow as the exchanging data format, this means we can avoid ser/der between Java/Scala and Python which can really speed up the communication efficiency than traditional way.

When you invoke python code in Java/Scala side, PyJava will start some python workers automatically and send the data to python worker, and once they are processed, send them back. The python workers are reused
by default.

The initial code in this lib is from Apache Spark.

Install

Setup python(>= 3.6) Env(Conda is recommended):

pip uninstall pyjava && pip install pyjava

Setup Java env(Maven is recommended):

For Scala 2.11/Spark 2.4.3

<dependency>
    <groupId>tech.mlsqlgroupId>
    <artifactId>pyjava-2.4_2.11artifactId>
    <version>0.3.2version>
dependency>

For Scala 2.12/Spark 3.1.1

<dependency>
    <groupId>tech.mlsqlgroupId>
    <artifactId>pyjava-3.0_2.12artifactId>
    <version>0.3.2version>
dependency>

Build Mannually

Install Build Tool:

pip install mlsql_plugin_tool

Build for Spark 3.1.1:

mlsql_plugin_tool spark311
mvn clean install -DskipTests -Pdisable-java8-doclint -Prelease-sign-artifacts

Build For Spark 2.4.3

mlsql_plugin_tool spark243
mvn clean install -DskipTests -Pdisable-java8-doclint -Prelease-sign-artifacts

Using python code snippet to process data in Java/Scala

With pyjava, you can run any python code in your Java/Scala application.

sourceEnconder.toRow(irow).copy() }.iterator // run the code and get the return result val javaConext = new JavaContext val commonTaskContext = new AppContextImpl(javaConext, batch) val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext) //f.copy(), copy function is required columnarBatchIter.flatMap { batch => batch.rowIterator.asScala }.foreach(f => println(f.copy())) javaConext.markComplete javaConext.close ">
val envs = new util.HashMap[String, String]()
// prepare python environment
envs.put(str(PythonConf.PYTHON_ENV), "source activate dev && export ARROW_PRE_0_15_IPC_FORMAT=1 ")

// describe the data which will be transfered to python 
val sourceSchema = StructType(Seq(StructField("value", StringType)))

val batch = new ArrowPythonRunner(
  Seq(ChainedPythonFunctions(Seq(PythonFunction(
    """
      |import pandas as pd
      |import numpy as np
      |
      |def process():
      |    for item in context.fetch_once_as_rows():
      |        item["value1"] = item["value"] + "_suffix"
      |        yield item
      |
      |context.build_result(process())
    """.stripMargin, envs, "python", "3.6")))), sourceSchema,
  "GMT", Map()
)

// prepare data
val sourceEnconder = RowEncoder.apply(sourceSchema).resolveAndBind()
val newIter = Seq(Row.fromSeq(Seq("a1")), Row.fromSeq(Seq("a2"))).map { irow =>
sourceEnconder.toRow(irow).copy()
}.iterator

// run the code and get the return result
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, batch)
val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext)

//f.copy(), copy function is required 
columnarBatchIter.flatMap { batch =>
  batch.rowIterator.asScala
}.foreach(f => println(f.copy()))
javaConext.markComplete
javaConext.close

Using python code snippet to process data in Spark

val enconder = RowEncoder.apply(struct).resolveAndBind() val envs = new util.HashMap[String, String]() envs.put(str(PythonConf.PYTHON_ENV), "source activate streamingpro-spark-2.4.x") val batch = new ArrowPythonRunner( Seq(ChainedPythonFunctions(Seq(PythonFunction( """ |import pandas as pd |import numpy as np |for item in data_manager.fetch_once(): | print(item) |df = pd.DataFrame({'AAA': [4, 5, 6, 7],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]}) |data_manager.set_output([[df['AAA'],df['BBB']]]) """.stripMargin, envs, "python", "3.6")))), struct, timezoneid, Map() ) val newIter = iter.map { irow => enconder.toRow(irow) } val commonTaskContext = new SparkContextImp(TaskContext.get(), batch) val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext) columnarBatchIter.flatMap { batch => batch.rowIterator.asScala.map(_.copy) } } val wow = SparkUtils.internalCreateDataFrame(session, abc, StructType(Seq(StructField("AAA", LongType), StructField("BBB", LongType))), false) wow.show() ">
val session = spark
import session.implicits._
val timezoneid = session.sessionState.conf.sessionLocalTimeZone
val df = session.createDataset[String](Seq("a1", "b1")).toDF("value")
val struct = df.schema
val abc = df.rdd.mapPartitions { iter =>
  val enconder = RowEncoder.apply(struct).resolveAndBind()
  val envs = new util.HashMap[String, String]()
  envs.put(str(PythonConf.PYTHON_ENV), "source activate streamingpro-spark-2.4.x")
  val batch = new ArrowPythonRunner(
    Seq(ChainedPythonFunctions(Seq(PythonFunction(
      """
        |import pandas as pd
        |import numpy as np
        |for item in data_manager.fetch_once():
        |    print(item)
        |df = pd.DataFrame({'AAA': [4, 5, 6, 7],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
        |data_manager.set_output([[df['AAA'],df['BBB']]])
      """.stripMargin, envs, "python", "3.6")))), struct,
    timezoneid, Map()
  )
  val newIter = iter.map { irow =>
    enconder.toRow(irow)
  }
  val commonTaskContext = new SparkContextImp(TaskContext.get(), batch)
  val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext)
  columnarBatchIter.flatMap { batch =>
    batch.rowIterator.asScala.map(_.copy)
  }
}

val wow = SparkUtils.internalCreateDataFrame(session, abc, StructType(Seq(StructField("AAA", LongType), StructField("BBB", LongType))), false)
wow.show()

Run Python Project

With Pyjava, you can tell the system where is the python project and which is then entrypoint, then you can run this project in Java/Scala.

"/tmp/data", "tempModelLocalPath" -> "/tmp/model" )) output.foreach(println) ">
import tech.mlsql.arrow.python.runner.PythonProjectRunner

val runner = new PythonProjectRunner("./pyjava/examples/pyproject1", Map())
val output = runner.run(Seq("bash", "-c", "source activate dev && python train.py"), Map(
  "tempDataLocalPath" -> "/tmp/data",
  "tempModelLocalPath" -> "/tmp/model"
))
output.foreach(println)

Example In MLSQL

None Interactive Mode:

!python env "PYTHON_ENV=source activate streamingpro-spark-2.4.x";
!python conf "schema=st(field(a,long),field(b,long))";

select 1 as a as table1;

!python on table1 '''

import pandas as pd
import numpy as np
for item in data_manager.fetch_once():
    print(item)
df = pd.DataFrame({'AAA': [4, 5, 6, 8],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
data_manager.set_output([[df['AAA'],df['BBB']]])

''' named mlsql_temp_table2;

select * from mlsql_temp_table2 as output; 

Interactive Mode:

!python start;

!python env "PYTHON_ENV=source activate streamingpro-spark-2.4.x";
!python env "schema=st(field(a,integer),field(b,integer))";


!python '''
import pandas as pd
import numpy as np
''';

!python  '''
for item in data_manager.fetch_once():
    print(item)
df = pd.DataFrame({'AAA': [4, 5, 6, 8],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
data_manager.set_output([[df['AAA'],df['BBB']]])
''';
!python close;

Using PyJava as Arrow Server/Client

Java Server side:

enconder.toRow(irow) }.iterator val javaConext = new JavaContext val commonTaskContext = new AppContextImpl(javaConext, null) val Array(_, host, port) = socketRunner.serveToStreamWithArrow(newIter, dataSchema, 10, commonTaskContext) println(s"${host}:${port}") Thread.currentThread().join() ">
val socketRunner = new SparkSocketRunner("wow", NetUtils.getHost, "Asia/Harbin")

val dataSchema = StructType(Seq(StructField("value", StringType)))
val enconder = RowEncoder.apply(dataSchema).resolveAndBind()
val newIter = Seq(Row.fromSeq(Seq("a1")), Row.fromSeq(Seq("a2"))).map { irow =>
  enconder.toRow(irow)
}.iterator
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, null)

val Array(_, host, port) = socketRunner.serveToStreamWithArrow(newIter, dataSchema, 10, commonTaskContext)
println(s"${host}:${port}")
Thread.currentThread().join()

Python Client side:

import os
import socket

from pyjava.serializers import \
    ArrowStreamPandasSerializer

out_ser = ArrowStreamPandasSerializer(None, True, True)

out_ser = ArrowStreamPandasSerializer("Asia/Harbin", False, None)
HOST = ""
PORT = -1
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
    sock.connect((HOST, PORT))
    buffer_size = int(os.environ.get("SPARK_BUFFER_SIZE", 65536))
    infile = os.fdopen(os.dup(sock.fileno()), "rb", buffer_size)
    outfile = os.fdopen(os.dup(sock.fileno()), "wb", buffer_size)
    kk = out_ser.load_stream(infile)
    for item in kk:
        print(item)

Python Server side:

import os

import pandas as pd

os.environ["ARROW_PRE_0_15_IPC_FORMAT"] = "1"
from pyjava.api.serve import OnceServer

ddata = pd.DataFrame(data=[[1, 2, 3, 4], [2, 3, 4, 5]])

server = OnceServer("127.0.0.1", 11111, "Asia/Harbin")
server.bind()
server.serve([{'id': 9, 'label': 1}])

Java Client side:

println(enconder.fromRow(i.copy()))) javaConext.close ">
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.types.{LongType, StringType, StructField, StructType}
import org.scalatest.{BeforeAndAfterAll, FunSuite}
import tech.mlsql.arrow.python.iapp.{AppContextImpl, JavaContext}
import tech.mlsql.arrow.python.runner.SparkSocketRunner
import tech.mlsql.common.utils.network.NetUtils

val enconder = RowEncoder.apply(StructType(Seq(StructField("a", LongType),StructField("b", LongType)))).resolveAndBind()
val socketRunner = new SparkSocketRunner("wow", NetUtils.getHost, "Asia/Harbin")
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, null)
val iter = socketRunner.readFromStreamWithArrow("127.0.0.1", 11111, commonTaskContext)
iter.foreach(i => println(enconder.fromRow(i.copy())))
javaConext.close

How to configure python worker runs in Docker (todo)

Owner
Byzer
Let data speak.
Byzer
This is a python package to get wards, districts,cities and provinces in Zimbabwe

Zim-Places Features This is a python package that allows you to search for cities, provinces, and districts in Zimbabwe.Zimbabwe is split into eight p

RONALD KANYEPI 2 Mar 01, 2022
Paprika is a python library that reduces boilerplate. Heavily inspired by Project Lombok.

Image courtesy of Anna Quaglia (Photographer) Paprika Paprika is a python library that reduces boilerplate. It is heavily inspired by Project Lombok.

Rayan Hatout 55 Dec 26, 2022
Eatlocal - This package helps users solve PyBites code challenges on their local machine

eatlocal This package helps the user solve Pybites code challenges locally. Inst

Russell 0 Jul 25, 2022
Mommas-cookbook - A Repository About Mom's Recipes

Mommas Cookbook A Repository for Mom's Recipes Contents bacalhau à Gomes de Sá Beef-Rendang bacalhau à Gomes de Sá, recommended by @s0undt3ch One of t

1 Jan 08, 2022
Dotfiles & list of programs

dotfiles & list of programs So I wanted to just backup my most used files. I have a bad habit, sometimes I get tired of a distro and do a wipe and sta

2 Sep 04, 2022
Interactivity Lab: Household Pulse Explorable

Interactivity Lab: Household Pulse Explorable Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a cur

1 Feb 10, 2022
TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virtual Summer Internship

💻 Welcome to Team Fleming's Repo! #TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virt

3 Aug 08, 2021
Open source style Deep Dream project

DeepDream ⚠️ If you don't have a gpu with cuda, the style transfer execution time will be much longer Prerequisites Python =3.8.10 How to Install sud

Patrick martins de lima 7 May 17, 2022
Comics/doujinshi reader application. Web-based, will work on desktop and tablet devices with swipe interface.

Yomiko Comics/doujinshi reader application. Web-based, will work on desktop and tablet devices with swipe interface. Scans one or more directories of

Kyubi Systems 26 Aug 10, 2022
Leveraging pythonic forces to defeat different coding challenges 🐍

Pyforces Leveraging pythonic forces to defeat different coding challenges! Table of Contents Pyforces Tests Pyforces Pyforces is a study repo with a c

Igor Grillo Peternella 8 Dec 14, 2022
p5 is a Python package based on the core ideas of Processing.

p5 p5 is a Python library that provides high level drawing functionality to help you quickly create simulations and interactive art using Python. It c

p5py 645 Jan 04, 2023
Easily Generate Revolut Business Cards

RevBusinessCardGen Easily Generate Revolut Business Cards Prerequisites Before you begin, ensure you have met the following requirements: You have ins

Younes™ 35 Dec 14, 2022
Gaia: a chrome extension that curates environmental news of a company

Gaia - Gaia: Your Environment News Curator Call for Code 2021 Gaia: a chrome extension that curates environmental news of a company Explore the docs »

4 Mar 19, 2022
Python3 Interface to numa Linux library

py-libnuma is python3 interface to numa Linux library so that you can set task affinity and memory affinity in python level for your process which can help you to improve your code's performence.

Dalong 13 Nov 10, 2022
Python Osmium Examples

Python Osmium Examples This is a set (currently of size 1) of examples showing practical usage of PyOsmium, a thin wrapper around the osmium library.

Martijn van Exel 1 Jan 26, 2022
An implementation of an interpreter for the Brainfuck esoteric language in Python

Brainfuck Interpreter in Python An implementation of an interpreter for the Brainfuck esoteric language in Python. 🧠 The Brainfuck Language Created i

Carlos Santos 0 Feb 01, 2022
Allow you to create you own custom decentralize job management system.

ants Allow you to create you own custom decentralize job management system. Install $ git clone https://github.com/hvuhsg/ants.git Run monitor exampl

1 Feb 15, 2022
A simplified python interface to COPASI.

BasiCO This project hosts a simplified python interface to COPASI. While all functionality from COPASI is exposed via automatically generated SWIG wra

COPASI 8 Dec 21, 2022
Junos PyEZ is a Python library to remotely manage/automate Junos devices.

The repo is under active development. If you take a clone, you are getting the latest, and perhaps not entirely stable code. DOCUMENTATION Official Do

Juniper Networks 623 Dec 10, 2022
Push a record and you will receive a email when that date

Push a record and you will receive a email when that date

5 Nov 28, 2022