AVD Quickstart Containerlab

Overview

AVD Quickstart Containerlab

WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example:

  • README is still work-in-progress
  • Lab configuration and adresses are hardcoded and have to be redefined in many different files if you setup is different. That will be simplified before the final release.
  • Some workflow and code optimization required.

Overview

This repository helps to build your own AVD test lab based on Containerlab in minutes. The main target is to provide an easy way to build the environment to learn and test AVD automation. The lab can be used together with CVP VM, but it's not mandatory.

WARNING: if CVP VM is part of the lab, make sure that it's reachable and credentials configured on CVP are matching the lab.

Release Notes:

  • 0.1
    • initial release with many shortcuts
  • 0.2
    • Fix bugs.
    • Improve lab topology.
    • Improve lab workflow.
    • Add EVPN AA scenario.

Lab Prerequisites

The lab requires a single Linux host (Ubuntu server recommended) with Docker and Containerlab installed. It's possible to run Containerlab on MacOS, but that was not tested. Dedicated Linux machine is currently the preferred option.

To test AVD with CVP, KVM can be installed on the same host. To install KVM, check this guide or any other resource available on internet. Once KVM is installed, you can use one of the following repositories to install CVP:

It is definitely possible to run CVP on a dedicated host and a different hypervisor as long as it can be reached by cLab devices.

NOTE: to use CVP VM with container lab it's not required to recompile Linux core. That's only required if you plan to use vEOS on KVM for you lab setup.

The lab setup diagram:

lab diagram

How To Use The Lab

  1. Clone this repository to your lab host: git clone https://github.com/arista-netdevops-community/avd-quickstart-containerlab.git
  2. It is recommended to remove git remote as changes are not supposed to be pushed to the origin: git remote remove origin
  3. Change to the lab directory: cd avd-quickstart-containerlab
  4. Before running the lab it is recommended to create a dedicated git branch for you lab experiments to keep original branch clean.
  5. Check makefile help for the list of commands available: make help
[email protected]:~/avd-quickstart-containerlab$ make help
avd_build_cvp                  build configs and configure switches via eAPI
avd_build_eapi                 build configs and configure switches via eAPI
build                          Build docker image
clab_deploy                    Deploy ceos lab
clab_destroy                   Destroy ceos lab
clab_graph                     Build lab graph
help                           Display help message
inventory_evpn_aa              onboard devices to CVP
inventory_evpn_mlag            onboard devices to CVP
onboard                        onboard devices to CVP
rm                             Remove all containerlab directories
run                            run docker image. This requires cLab "custom_mgmt" to be present
  1. If you don't have cEOS image on your host yet, download it from arista.com and import. Make sure that image name is matching the parameters defined in CSVs_EVPN_AA/clab.yml or CSVs_EVPN_MLAG/clab.yml
  2. Use make build to build avd-quickstart:latest container image. If that was done earlier and the image already exists, you can skip this step.
  3. Run make inventory_evpn_aa or make inventory_evpn_mlag to build the inventory for EVPN AA or MLAG scenario. Ideally AVD inventroy must be a different repository, but for simplicity script will generate inventory in the current directory.
  4. Review the inventory generated by avd-quickstart. You can optionally git commit the changes.
  5. Run make clab_deploy to build the containerlab. Wait until the deployment will finish.
  6. Execute make run to run avd-quickstart container.
  7. If CVP VM is used in the lab, onboard cLab switches with make onboard. Once the script behind this shortcut wil finish, devices will appear in the CVP inventory.
  8. To execute Ansible AVD playbook, use make avd_build_eapi or make avd_build_cvp shortcuts. That will execute playbook/fabric-deploy-eapi.yml or playbook/fabric-deploy-cvp.yml.
  9. Run make avd_validate to execute AVD state validation playbook playbooks/validate-states.yml.
  10. Run make avd_snapshot if you want to collect a network snapshot with playbooks/snapshot.yml.
  11. Connect to hosts and switches and run some pings, show commands, etc. To connect to a lab device, you can type it's hostname in the container:

connect to a device from the container

NOTE: device hostnames are currently hardcoded inside the avd-quickstart container. If you have customized the inventory, ssh to the device manually. That will be improved in the coming versions.

You can optionally git commit the changes and start playing with the lab. Use CSVs to add some VLANs, etc. for example. Re-generate the inventory and check how the AVD repository data changes.

How To Destroy The Lab

  1. Exit the avd-quickstart container by typing exit
  2. Execute make clab_destroy to destroy the containerlab.
  3. Execute make rm to delete the generated AVD inventory.
Owner
Carl Buchmann
Systems Engineer @ Arista Networks Passionate about designing networks and automating them!
Carl Buchmann
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022