ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

Overview

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation
(Accepted by BMVC'21)

image

Abstract:

Images acquired from rainy scenes usually suffer from bad visibility which may damage the performance of computer vision applications. The rainy scenarios can be categorized into two classes: moderate rain and heavy rain scenes. Moderate rain scene mainly consists of rain streaks while heavy rain scene contains both rain streaks and the veiling effect (similar to haze). Although existing methods have achieved excellent performance on these two cases individually, it still lacks a general architecture to address both heavy rain and moderate rain scenarios effectively. In this paper, we construct a hierarchical multi-direction representation network by using the contourlet transform (CT) to address both moderate rain and heavy rain scenarios. The CT divides the image into the multi-direction subbands (MS) and the semantic subband (SS). First, the rain streak information is retrieved to the MS based on the multi-orientation property of the CT. Second, a hierarchical architecture is proposed to reconstruct the background information including damaged semantic information and the veiling effect in the SS. Last, the multi-level subband discriminator with the feedback error map is proposed. By this module, all subbands can be well optimized. This is the first architecture that can address both of the two scenarios effectively.

[Paper] [Supplementary Material]

You can also refer our previous works on other low-level vision applications!

Desnowing-[HDCWNet] (ICCV'21) and [JSTASR](ECCV'20)
Dehazing-[PMS-Net](CVPR'19) and [PMHLD](TIP'20)
Image Relighting-[MB-Net] (NTIRE'21 1st solution) and [S3Net] (NTIRE'21 3 rd solution)

Network Architecture

image

Experimental Results

Quantitative Evaluation

image image

Qualitative Evaluation

image image

Setup and environment

To generate the recovered result you need:

  1. Python 3
  2. CPU or NVIDIA GPU + CUDA CuDNN
  3. Pytorch 1.0+

For moderate rain (trained on Rain100H dataset)

$ python test_real.py --ckpt ckpt/r100h --real_dir input_img/moderate

For heavy rain (trained on Heavy Rain dataset)

$ python test_real.py --ckpt ckpt/heavyrain --real_dir input_img/heavy

Citations

Please cite this paper in your publications if it is helpful for your tasks:

Bibtex:

@inproceedings{chen2021contour,
  title={ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation},
  author={Chen, Wei-Ting and Tsai, Cheng-Che and Fang, Hao-Yu and and Chen, I-Hsiang and Ding, Jian-Jiun and Kuo, Sy-Yen},
  booktitle={Proceedings of the British Machine Vision Conference},
  year={2021}
}
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023