A small library for creating and manipulating custom JAX Pytree classes

Overview

Treeo

A small library for creating and manipulating custom JAX Pytree classes

  • Light-weight: has no dependencies other than jax.
  • Compatible: Treeo Tree objects are compatible with any jax function that accepts Pytrees.
  • Standards-based: treeo.field is built on top of python's dataclasses.field.
  • Flexible: Treeo is compatible with both dataclass and non-dataclass classes.

Treeo lets you easily create class-based Pytrees so your custom objects can easily interact seamlessly with JAX. Uses of Treeo can range from just creating simple simple JAX-aware utility classes to using it as the core abstraction for full-blown frameworks. Treeo was originally extracted from the core of Treex and shares a lot in common with flax.struct.

Documentation | User Guide

Installation

Install using pip:

pip install treeo

Basics

With Treeo you can easily define your own custom Pytree classes by inheriting from Treeo's Tree class and using the field function to declare which fields are nodes (children) and which are static (metadata):

import treeo as to

@dataclass
class Person(to.Tree):
    height: jnp.array = to.field(node=True) # I am a node field!
    name: str = to.field(node=False) # I am a static field!

field is just a wrapper around dataclasses.field so you can define your Pytrees as dataclasses, but Treeo fully supports non-dataclass classes as well. Since all Tree instances are Pytree they work with the various functions from thejax library as expected:

p = Person(height=jnp.array(1.8), name="John")

# Trees can be jitted!
jax.jit(lambda person: person)(p) # Person(height=array(1.8), name='John')

# Trees can be mapped!
jax.tree_map(lambda x: 2 * x, p) # Person(height=array(3.6), name='John')

Kinds

Treeo also include a kind system that lets you give semantic meaning to fields (what a field represents within your application). A kind is just a type you pass to field via its kind argument:

class Parameter: pass
class BatchStat: pass

class BatchNorm(to.Tree):
    scale: jnp.ndarray = to.field(node=True, kind=Parameter)
    mean: jnp.ndarray = to.field(node=True, kind=BatchStat)

Kinds are very useful as a filtering mechanism via treeo.filter:

model = BatchNorm(...)

# select only Parameters, mean is filtered out
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)

Nothing behaves like None in Python, but it is a special value that is used to represent the absence of a value within Treeo.

Treeo also offers the merge function which lets you rejoin filtered Trees with a logic similar to Python dict.update but done recursively:

def loss_fn(params, model, ...):
    # add traced params to model
    model = to.merge(model, params)
    ...

# gradient only w.r.t. params
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)
grads = jax.grad(loss_fn)(params, model, ...)

For a more in-depth tour check out the User Guide.

Examples

A simple Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Character(to.Tree):
    position: jnp.ndarray = to.field(node=True)    # node field
    name: str = to.field(node=False, opaque=True)  # static field

character = Character(position=jnp.array([0, 0]), name='Adam')

# character can freely pass through jit
@jax.jit
def update(character: Character, velocity, dt) -> Character:
    character.position += velocity * dt
    return character

character = update(character velocity=jnp.array([1.0, 0.2]), dt=0.1)

A Stateful Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Counter(to.Tree):
    n: jnp.array = to.field(default=jnp.array(0), node=True) # node
    step: int = to.field(default=1, node=False) # static

    def inc(self):
        self.n += self.step

counter = Counter(step=2) # Counter(n=jnp.array(0), step=2)

@jax.jit
def update(counter: Counter):
    counter.inc()
    return counter

counter = update(counter) # Counter(n=jnp.array(2), step=2)

# map over the tree

Full Example - Linear Regression

import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np

import treeo as to


class Linear(to.Tree):
    w: jnp.ndarray = to.node()
    b: jnp.ndarray = to.node()

    def __init__(self, din, dout, key):
        self.w = jax.random.uniform(key, shape=(din, dout))
        self.b = jnp.zeros(shape=(dout,))

    def __call__(self, x):
        return jnp.dot(x, self.w) + self.b


@jax.value_and_grad
def loss_fn(model, x, y):
    y_pred = model(x)
    loss = jnp.mean((y_pred - y) ** 2)

    return loss


def sgd(param, grad):
    return param - 0.1 * grad


@jax.jit
def train_step(model, x, y):
    loss, grads = loss_fn(model, x, y)
    model = jax.tree_map(sgd, model, grads)

    return loss, model


x = np.random.uniform(size=(500, 1))
y = 1.4 * x - 0.3 + np.random.normal(scale=0.1, size=(500, 1))

key = jax.random.PRNGKey(0)
model = Linear(1, 1, key=key)

for step in range(1000):
    loss, model = train_step(model, x, y)
    if step % 100 == 0:
        print(f"loss: {loss:.4f}")

X_test = np.linspace(x.min(), x.max(), 100)[:, None]
y_pred = model(X_test)

plt.scatter(x, y, c="k", label="data")
plt.plot(X_test, y_pred, c="b", linewidth=2, label="prediction")
plt.legend()
plt.show()
Comments
  • Use field kinds within tree_map

    Use field kinds within tree_map

    Firstly, thanks for creating Treeo - it's a fantastic package.

    Is there a way to use methods defined within a field's kind object within a tree_map call? For example, consider the following MWE

    import jax.numpy as jnp
    
    class Parameter:
        def transform(self):
            return jnp.exp(self)
    
    
    @dataclass
    class Model(to.Tree):
        lengthscale: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=Parameter
        )
    

    is there a way that I could do something similar to the following pseudocode snippet:

    m = Model()
    jax.tree_map(lamdba x: x.transform(), to.filter(m, Parameter))
    
    opened by thomaspinder 10
  • Stacking of Treeo.Tree

    Stacking of Treeo.Tree

    I'm running into some issues when trying to stack a list of Treeo.Tree objects into a single object. I've made a short example:

    from dataclasses import dataclass
    
    import jax
    import jax.numpy as jnp
    import treeo as to
    
    @dataclass
    class Person(to.Tree):
        height: jnp.array = to.field(node=True) # I am a node field!
        age_static: jnp.array = to.field(node=False) # I am a static field!, I should not be updated.
        name: str = to.field(node=False) # I am a static field!
    
    persons = [
        Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
        Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
        Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
    ]
    
    # Stack (struct of arrays instead of list of structs)
    jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    

    However, this fails with the following exception:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Cell In[1], line 18
         11     name: str = to.field(node=False) # I am a static field!
         13 persons = [
         14     Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
         15     Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
         16     Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
         17 ]
    ---> 18 jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in tree_map(f, tree, is_leaf, *rest)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in <listcomp>(.0)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    ValueError: Mismatch custom node data: {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(25., dtype=float32, weak_type=True), 'name': 'John'} != {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(100., dtype=float32, weak_type=True), 'name': 'Wald'}; value: Person(height=DeviceArray(1.7, dtype=float32, weak_type=True), age_static=DeviceArray(100., dtype=float32, weak_type=True), name='Wald').
    

    Versions used:

    • JAX: 0.3.20
    • Treeo: 0.0.10

    From a certain perspective this is expected because jax.tree_map does not apply to static (node=False) fields. So in this sense, this might not be really an issue with Treeo. However, I'm looking for some guidance on how to still be able to stack objects like this with static fields. Has anyone has tried something similar and come up with a nice solution?

    opened by peterroelants 3
  • Jitting twice for a class method

    Jitting twice for a class method

    import jax
    import jax.numpy as jnp
    import treeo as to
    
    class A(to.Tree):
        X: jnp.array = to.field(node=True)
        
        def __init__(self):
            self.X = jnp.ones((50, 50))
    
        @jax.jit
        def f(self, Y):
            return jnp.sum(Y ** 2) * jnp.sum(self.X ** 2)
    
    Y = jnp.ones(2)
    for i in range(5):
        print(A.f._cache_size())
        a = A()
        a.f(Y)
    

    The output of the above is 0 1 2 2 2 with jax 0.3.15. No idea what's happening. It seems to work fine with 0.3.10 and the output is 0 1 1 1 1. Thanks.

    opened by pipme 2
  • Change Mutable API

    Change Mutable API

    Changes

    • Previously self.mutable(*args, method=method, **kwargs)
    • Is now...... self.mutable(method=method)(*args, **kwargs)
    • Opaque API is removed
    • inplace argument is now only available for apply.
    • Immutable.{mutable, toplevel_mutable} methods are removed.
    fix 
    opened by cgarciae 1
  • Improve mutability support

    Improve mutability support

    Changes

    • Fixes issues with immutability in compact context
    • The make_mutable context manager and the mutable function now expose a toplevel_only: bool argument.
    • Adds a _get_unbound_method private function in utils.
    feature 
    opened by cgarciae 1
  • Bug Fixes from 0.0.11

    Bug Fixes from 0.0.11

    Changes

    • Fixes an issues that disabled mutability inside __init__ for Immutable classes when TreeMeta's `constructor method is overloaded.
    • Fixes the Apply.apply mixin method.

    Closes cgarciae/treex#68

    fix 
    opened by cgarciae 1
  • Adds support for immutable Trees

    Adds support for immutable Trees

    Changes

    • Adds an Immutable mixin that can make Trees effectively immutable (as far as python permits).
    • Immutable contains the .replace and .mutable methods that let you manipulate state in a functionally pure fashion.
    • Adds the mutable function transformation / decorator which lets you turn function that perform mutable operation into pure functions.
    opened by cgarciae 1
  • Add the option of using add_field_info inside map

    Add the option of using add_field_info inside map

    This PR addresses the comments made in #2 . An additional argument is created within map to allow for a field_info boolean flag to passed. When true, jax.tree_map is carried out under the with add_field_info(): context manager.

    Tests have been added to test for correct function application on classes contain Trees with mixed kind types.

    A brief section has been added to the documentation to reflect the above changes.

    opened by thomaspinder 1
  • Get all unique kinds

    Get all unique kinds

    Hi,

    Is there a way that I can get a list of all the unique kinds within a nested dataclass? For example:

    class KindOne: pass
    class KindTwo: pass
    
    @dataclass
    class SubModel(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindOne
        )
    
    
    @dataclass 
    class Model(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindTwo
        )
    
    m = Model()
    
    m.unique_kinds() # [KindOne, KindTwo]
    
    opened by thomaspinder 1
  • Compact

    Compact

    Changes

    • Removes opaque_is_equal, same functionality available through opaque.
    • Adds compact decorator that enable the definition of Tree subnodes at runtime.
    • Adds the Compact mixin that adds the first_run property and the get_field method.
    opened by cgarciae 0
  • Relax jax/jaxlib version constraints

    Relax jax/jaxlib version constraints

    Now that jax 0.3.0 and jaxlib 0.3.0 have been released the version constraints in pyproject.toml are outdated.

    https://github.com/cgarciae/treeo/blob/a402f3f69557840cfbee4d7804964b8e2c47e3f7/pyproject.toml#L16-L17

    This corresponds to the version constraint jax<0.3.0,>=0.2.18 (https://python-poetry.org/docs/dependency-specification/#caret-requirements). Now that jax v0.3.0 has been released (https://github.com/google/jax/releases/tag/jax-v0.3.0) this doesn't work with the latest version. I think the same applies to jaxlib as well, since it also got upgraded to v0.3.0 (https://github.com/google/jax/releases/tag/jaxlib-v0.3.0).

    opened by samuela 4
  • TracedArrays treated as nodes by default

    TracedArrays treated as nodes by default

    Current for convenience all non-Tree fields which are not declared are set to static fields as most fields actually are, however, for more complex applications a Traced Array might actually be passed when a static field is usually expected.

    A simple solution is change the current node policy to treat any field containing a TracedArray as a node, this would be the same as the current policy for Tree fields.

    opened by cgarciae 0
Releases(0.2.1)
Owner
Cristian Garcia
ML Engineer at Quansight, working on Treex and Elegy.
Cristian Garcia
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig KΓΌrzinger 217 Jan 04, 2023
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022