Transformer Tracking (CVPR2021)

Related tags

Deep LearningTransT
Overview

TransT - Transformer Tracking [CVPR2021]

Official implementation of the TransT (CVPR2021) , including training code and trained models.

We are revising the paper and will upload it in the next week

Results

Model LaSOT
AUC (%)
TrackingNet
AUC (%)
GOT-10k
AO (%)
OTB100
AUC (%)
NFS
AUC (%)
UAV123
AUC (%)
Speed
Params
TransT-N2 64.2 80.9 69.9 69.3 65.4 66.0 65.6fps 16.7M
TransT-N4 64.9 81.4 72.3 69.0 65.3 68.1 47.3fps 23.0M

Installation

This document contains detailed instructions for installing the necessary dependencied for TransT. The instructions have been tested on Ubuntu 18.04 system.

Install dependencies

  • Create and activate a conda environment

    conda create -n transt python=3.7
    conda activate transt
  • Install PyTorch

    conda install -c pytorch pytorch=1.5 torchvision=0.6.1 cudatoolkit=10.2
  • Install other packages

    conda install matplotlib pandas tqdm
    pip install opencv-python tb-nightly visdom scikit-image tikzplotlib gdown
    conda install cython scipy
    pip install pycocotools jpeg4py
    pip install wget yacs
    pip install shapely==1.6.4.post2
  • Setup the environment
    Create the default environment setting files.

    # Change directory to <PATH_of_TransT>
    cd TransT
    
    # Environment settings for pytracking. Saved at pytracking/evaluation/local.py
    python -c "from pytracking.evaluation.environment import create_default_local_file; create_default_local_file()"
    
    # Environment settings for ltr. Saved at ltr/admin/local.py
    python -c "from ltr.admin.environment import create_default_local_file; create_default_local_file()"

You can modify these files to set the paths to datasets, results paths etc.

  • Add the project path to environment variables
    Open ~/.bashrc, and add the following line to the end. Note to change <path_of_TransT> to your real path.
    export PYTHONPATH=<path_of_TransT>:$PYTHONPATH
    
  • Download the pre-trained networks
    Download the network for TransT and put it in the directory set by "network_path" in "pytracking/evaluation/local.py". By default, it is set to pytracking/networks.

Quick Start

Traning

  • Modify local.py to set the paths to datasets, results paths etc.
  • Runing the following commands to train the TransT. You can customize some parameters by modifying transt.py
    conda activate transt
    cd TransT/ltr
    python run_training.py transt transt

Evaluation

  • We integrated PySOT for evaluation.

    You need to specify the path of the model and dataset in the test.py.

    net_path = '/path_to_model' #Absolute path of the model
    dataset_root= '/path_to_datasets' #Absolute path of the datasets

    Then run the following commands.

    conda activate TransT
    cd TransT
    python -u pysot_toolkit/test.py --dataset <name of dataset> --name 'transt' #test tracker #test tracker
    python pysot_toolkit/eval.py --tracker_path results/ --dataset <name of dataset> --num 1 --tracker_prefix 'transt' #eval tracker

    The testing results will in the current directory(results/dataset/transt/)

  • You can also use pytracking to test and evaluate tracker. The results might be slightly different with PySOT due to the slight difference in implementation (pytracking saves results as integers, pysot toolkit saves the results as decimals).

Acknowledgement

This is a modified version of the python framework PyTracking based on Pytorch, also borrowing from PySOT and detr. We would like to thank their authors for providing great frameworks and toolkits.

Contact

  • Xin Chen (email:[email protected])

    Feel free to contact me if you have additional questions.

Owner
chenxin
Master Student of Dalian University of Technology
chenxin
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022