Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Overview

Deep Illuminator

Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image. It has been tested with several datasets and models and has been shown to succesfully improve performance. It has a built in visualizer created with Streamlit to preview how the target image can be relit. This tool has an accompanying paper.

Example Augmentations

Usage

The simplest method to use this tool is through Docker Hub:

docker pull kartvel/deep-illuminator

Visualizer

Once you have the Deep Illuminator image run the following command to launch the visualizer:

docker run -it --rm  --gpus all \
-p 8501:8501 --entrypoint streamlit \ 
kartvel/deep-illuminator run streamlit/streamlit_app.py

You will be able to interact with it on localhost:8501. Note: If you do not have NVIDIA gpu support enabled for docker simply remove the --gpus all option.

Generating Variants

It is possible to quickly generate multiple variants for images contained in a directory by using the following command:

docker run -it --rm --gpus all \                                                                                               ─╯
-v /path/to/input/images:/app/probe_relighting/originals \
-v /path/to/save/directory:/app/probe_relighting/output \
kartvel/deep-illuminator --[options]

Options

Option Values Description
mode ['synthetic', 'mid'] Selecting the style of probes used as a relighting guide.
step int Increment for the granularity of relighted images. max mid: 24, max synthetic: 360

Buidling Docker image or running without a container

Please read the following for other options: instructions

Benchmarks

Improved performance of R2D2 for [email protected] on HPatches

Training Dataset Overall Viewpoint Illumination
COCO - Original 71.0 65.4 77.1
COCO - Augmented 72.2 (+1.7%) 65.7 (+0.4%) 79.2 (+2.7%)
VIDIT - Original 66.7 60.5 73.4
VIDIT - Augmented 69.2 (+3.8%) 60.9 (+0.6%) 78.1 (+6.4%)
Aachen - Original 69.4 64.1 75.0
Aachen - Augmented 72.6 (+4.6%) 66.1 (+3.1%) 79.6 (+6.1%)

Improved performance of R2D2 for the Long-Term Visual Localization challenge on Aachen v1.1

Training Dataset 0.25m, 2° 0.5m, 5° 5m, 10°
COCO - Original 62.3 77.0 79.5
COCO - Augmented 65.4 (+5.0%) 83.8 (+8.8%) 92.7 (+16%)
VIDIT - Original 40.8 53.4 61.3
VIDIT - Augmented 53.9 (+32%) 71.2 (+33%) 83.2(+36%)
Aachen - Original 60.7 72.8 83.8
Aachen - Augmented 63.4 (+4.4%) 81.7 (+12%) 92.1 (+9.9%)

Acknowledgment

The developpement of the VAE for the visualizer was made possible by the PyTorch-VAE repository.

Bibtex

If you use this code in your project, please consider citing the following paper:

@misc{chogovadze2021controllable,
      title={Controllable Data Augmentation Through Deep Relighting}, 
      author={George Chogovadze and Rémi Pautrat and Marc Pollefeys},
      year={2021},
      eprint={2110.13996},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
3 Apr 20, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022