Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

Related tags

Deep LearningMGANs
Overview

MGANs

Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks".

See this video for a quick explaination for our method and results.

Setup

As building Torch with the latest CUDA is a troublesome work, we recommend following the following steps to people who want to reproduce the results: It has been tested on Ubuntu with CUDA 10.

Step One: Install CUDA 10 and CUDNN 7.6.2

If you have a fresh Ubuntu, we recommend Lambda Stack which helps you install the latest drivers, libraries, and frameworks for deep learning. Otherwise, you can install the CUDA toolkit and CUDNN from these links:

Step Two: Install Torch

git clone https://github.com/nagadomi/distro.git ~/torch --recursive
cd ~/torch
./install-deps
./clean.sh
./update.sh

. ~/torch/install/bin/torch-activate
sudo apt-get install libprotobuf-dev protobuf-compiler
luarocks install loadcaffe

Demo

cd code
th demo_MGAN.lua

Training

Simply cd into folder "code/" and run the training script.

th train.lua

The current script is an example of training a network from 100 ImageNet photos and a single painting from Van Gogh. The input data are organized in the following way:

  • "Dataset/VG_Alpilles_ImageNet100/ContentInitial": 5 training ImageNet photos to initialize the discriminator.
  • "Dataset/VG_Alpilles_ImageNet100/ContentTrain": 100 training ImageNet photos.
  • "Dataset/VG_Alpilles_ImageNet100/ContentTest": 10 testing ImageNet photos (for later inspection).
  • "Dataset/VG_Alpilles_ImageNet100/Style": Van Gogh's painting.

The training process has three main steps:

  • Use MDAN to generate training images (MDAN_wrapper.lua).
  • Data Augmentation (AG_wrapper.lua).
  • Train MGAN (MDAN_wrapper.lua).

Testing

The testing process has two steps:

  • Step 1: call "th release_MGAN.lua" to concatenate the VGG encoder with the generator.
  • Step 2: call "th demo_MGAN.lua" to test the network with new photos.

Display

You can use the browser based display package to display the training process for both MDANs and MGANs.

  • Install: luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Call: th -ldisplay.start
  • See results at this URL: http://localhost:8000

Example

We chose Van Gogh's "Olive Trees with the Alpilles in the Background" as the reference texture.

We then transfer 100 ImageNet photos into the same style with the proposed MDANs method. MDANs take an iterative deconvolutional approach, which is similar to "A Neural Algorithm of Artistic Style" by Leon A. Gatys et al. and our previous work "CNNMRF". Differently, it uses adversarial training instead of gaussian statistics ("A Neural Algorithm of Artistic Style) or nearest neighbour search "CNNMRF". Here are some transferred results from MDANs:

The results look nice, so we know adversarial training is able to produce results that are comparable to previous methods. In other experiments we observed that gaussian statistics work remarkable well for painterly textures, but can sometimes be too flexible for photorealistic textures; nearest-neighbor search preserve photorealistic details but can be too rigid for deformable textures. In some sense MDANs offers a relatively more balanced choice with advaserial training. See our paper for more discussoins.

Like previous deconvolutional methods, MDANs is VERY slow. A Nvidia Titan X takes about one minute to transfer a photo of 384 squared. To make it faster, we replace the deconvolutional process by a feed-forward network (MGANs). The feed-forward network takes long time to train (45 minutes for this example on a Titan X), but offers significant speed up in testing time. Here are some results from MGANs:

It is our expectation that MGANs will trade quality for speed. The question is: how much? Here are some comparisons between the result of MDANs and MGANs:

In general MDANs (middle) give more stylished results, and does a much better job at homegenous background areas (the last two cases). But sometimes MGANs (right) is able to produce comparable results (the first two).

And MGANs run at least two orders of magnitudes faster.

Final remark

There are concurrent works that try to make deep texture synthesis faster. For example, Ulyanov et al. and Johnson et al. also achieved significant speed up and very nice results with a feed-forward architecture. Both of these two methods used the gaussian statsitsics constraint proposed by Gatys et al.. We believe our method is a good complementary: by changing the gaussian statistics constraint to discrimnative networks trained with Markovian patches, it is possible to model more complex texture manifolds (see discussion in our paper).

Last, here are some prelimiary results of training a MGANs for photorealistic synthesis. It learns from 200k face images from CelebA. The network then transfers VGG_19 encoding (layer ReLU5_1) of new face images (left) into something interesting (right). The synthesized faces have the same poses/layouts as the input faces, but look like different persons :-)

Acknowledgement

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022