CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

Related tags

Deep LearningHDRUNet
Overview

HDRUNet [Paper Link]

HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization

By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao and Chao Dong

We won the second place in NTIRE2021 HDR Challenge (Track1: Single Frame). The paper is accepted to CVPR2021 Workshop.

BibTeX

@inproceedings{chen2021hdrunet,
  title={HDRUnet: Single image hdr reconstruction with denoising and dequantization},
  author={Chen, Xiangyu and Liu, Yihao and Zhang, Zhengwen and Qiao, Yu and Dong, Chao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={354--363},
  year={2021}
}

Overview

Overview of the network:

Overview of the loss function:

Tanh_L1(Y, H) = |Tanh(Y) - Tanh(H)|

Getting Started

  1. Dataset
  2. Configuration
  3. How to test
  4. How to train
  5. Visualization

Dataset

Register a codalab account and log in, then find the download link on this page:

https://competitions.codalab.org/competitions/28161#participate-get-data

It is strongly recommended to use the data provided by the competition organizer for training and testing, or you need at least a basic understanding of the competition data. Otherwise, you may not get the desired result.

Configuration

pip install -r requirements.txt

How to test

  • Modify dataroot_LQ and pretrain_model_G (you can also use the pretrained model which is provided in the ./pretrained_model) in ./codes/options/test/test_HDRUNet.yml, then run
cd codes
python test.py -opt options/test/test_HDRUNet.yml

The test results will be saved to ./results/testset_name.

How to train

  • Prepare the data. Modify input_folder and save_folder in ./scripts/extract_subimgs_single.py, then run
cd scripts
python extract_subimgs_single.py
  • Modify dataroot_LQ and dataroot_GT in ./codes/options/train/train_HDRUNet.yml, then run
cd codes
python train.py -opt options/train/train_HDRUNet.yml

The models and training states will be saved to ./experiments/name.

Visualization

In ./scripts, several scripts are available. data_io.py and metrics.py are provided by the competition organizer for reading/writing data and evaluation. Based on these codes, I provide a script for visualization by using the tone-mapping provided in metrics.py. Modify paths of the data in ./scripts/tonemapped_visualization.py and run

cd scripts
python tonemapped_visualization.py

to visualize the images.

Acknowledgment

The code is inspired by BasicSR.

Owner
XyChen
PhD. Student,Computer Vision
XyChen
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022