SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

Overview

SelfAugment

Paper

@misc{reed2020selfaugment,
      title={SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning}, 
      author={Colorado Reed and Sean Metzger and Aravind Srinivas and Trevor Darrell and Kurt Keutzer},
      year={2020},
      eprint={2009.07724},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Using your own dataset.

To interface your own dataset, make sure that you carefully check the three main scripts to incorporate your dataset:

  1. main_moco.py
  2. main_lincls.py
  3. faa.py

Some things to check:

  1. Ensure that the sizing for your dataset is right. If your images are 32x32 (e.g. CIFAR10) - you should ensure that you are using the CIFAR10 style model, which uses a 3x3 input conv, and resizes images to be 28x28 instead of 224x224 (e.g. for ImageNet). This can make a big difference!
  2. If you want selfaugment to run quickly, consider using a small subset of your full dataset. For example, for ImageNet, we only use a small subset of the data - 50,000 random images. This may mean that you need to run unsupervised pretraining for longer than you usually do. We usually scale the number of epochs MoCov2 runs so that the number of total iterations is the same, or a bit smaller, for the subset and the full dataset.

Base augmentation.

If you want to find the base augmentation, then use slm_utils/submit_single_augmentations.py

This will result in 16 models, each with the results of self supervised training using ONLY the augmentation provided. slm_utils/submit_single_augmentations is currently using imagenet, so it uses a subset for this part.

Then you will need to train rotation classifiers for each model. this can be done using main_lincls.py

Train 5 Folds of MoCov2 on the folds of your data.

To get started, train 5 moco models using only the base augmentation. To do this, you can run python slm_utils/submit_moco_folds.py.

Run SelfAug

Now, you must run SelfAug on your dataset. Note - some changes in dataloaders may be necessary depending on your dataset.

@Colorado, working on making this process cleaner.

For now, you will need to go into faa_search_single_aug_minmax_w.py, and edit the config there. I will change this to argparse here soon. The most critical part of this is entering your checkpoint names in order of each fold under config.checkpoints.

Loss can be rotation, icl, icl_and_rotation. If you are doing icl_and_rotation, then you will need to normalize the loss_weights in loss_weight dict so that each loss is 1/(avg loss across k-folds) for each type of loss, I would just use the loss that was in wandb (rot train loss, and ICL loss from pretraining). Finally, you are trying to maximize negative loss with Ray, so a negative weighting in the loss weights means that the loss with that weight will be maximized.

Retrain using new augmentations found by SelfAug.

Just make sure to change the augmentation path to the pickle file with your new augmentations in load_policies function in get_faa_transforms.py Then, submit the job using slm_utils/submit_faa_moco.py

Owner
Colorado Reed
CS PhD student at Berkeley
Colorado Reed
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022