Pretrained Japanese BERT models

Overview

Pretrained Japanese BERT models

This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face.

For information on the previous versions of our pretrained models, see the v1.0 tag of this repository.

Model Architecture

The architecture of our models are the same as the original BERT models proposed by Google.

  • BERT-base models consist of 12 layers, 768 dimensions of hidden states, and 12 attention heads.
  • BERT-large models consist of 24 layers, 1024 dimensions of hidden states, and 16 attention heads.

Training Data

The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020.

The generated corpus files are 4.0GB in total, consisting of approximately 30M sentences. We used the MeCab morphological parser with mecab-ipadic-NEologd dictionary to split texts into sentences.

$WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

$ python make_corpus_wiki.py \
--input_file jawiki-20200831-cirrussearch-content.json.gz \
--output_file $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--min_text_length 10 \
--max_text_length 200 \
--mecab_option "-r $HOME/local/etc/mecabrc -d $HOME/local/lib/mecab/dic/mecab-ipadic-neologd-v0.0.7"

# Split corpus files for parallel preprocessing of the files
$ python merge_split_corpora.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--output_dir $WORK_DIR/corpus/jawiki-20200831 \
--num_files 8

# Sample some lines for training tokenizers
$ cat $WORK_DIR/corpus/jawiki-20200831/corpus.txt|grep -v '^$'|shuf|head -n 1000000 \
> $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt

Tokenization

For each of BERT-base and BERT-large, we provide two models with different tokenization methods.

  • For wordpiece models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768.
  • For character models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into characters. The vocabulary size is 6144.

We used fugashi and unidic-lite packages for the tokenization.

$WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ TOKENIZERS_PARALLELISM=false python train_tokenizer.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt \
--output_dir $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--vocab_size 32768 \
--limit_alphabet 6129 \
--num_unused_tokens 10

# Character
$ head -n 6144 $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
> $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt

Training

The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.

For training of each model, we used a v3-8 instance of Cloud TPUs provided by TensorFlow Research Cloud program. The training took about 5 days and 14 days for BERT-base and BERT-large models, respectively.

Creation of the pretraining data

$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ mkdir -p $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data
# It takes 3h and 420GB RAM, producing 43M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

# Character
$ mkdir $WORK_DIR/bert/jawiki-20200831/character/pretraining_data
# It takes 4h10m and 615GB RAM, producing 55M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt \
--tokenizer_type character \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

Training of the models

Note: all the necessary files need to be stored in a Google Cloud Storage (GCS) bucket.

# BERT-base, WordPiece (unidic_lite)
$ ctpu up -name tpu01 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu01

# BERT-base, Character
$ ctpu up -name tpu02 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu02

# BERT-large, WordPiece (unidic_lite)
$ ctpu up -name tpu03 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu03

# BERT-large, Character
$ ctpu up -name tpu04 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu04

Licenses

The pretrained models are distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0.

The codes in this repository are distributed under the Apache License 2.0.

Related Work

Acknowledgments

The models are trained with Cloud TPUs provided by TensorFlow Research Cloud program.

Owner
Inui Laboratory
Inui Laboratory, Tohoku University
Inui Laboratory
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022