Code and data for ImageCoDe, a contextual vison-and-language benchmark

Overview

ImageCoDe

arxiv

This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions.

Example

Data

All collected descriptions for the training and validation set are under data/train_data.json and data/valid_data.json.

Image sets can be downloaded on Zenodo or GoogleDrive and should be unzipped in data/.

You can download from the commandline via:

wget https://zenodo.org/record/6518944/files/image-sets.zip

For ViLBERT experiments, you need to download a pretrained ViLBERT checkpoint from volta here, simply by clicking on ViLBERT in the table. Save the downloaded file as baselines/vilbert/vilbert-pretrained.bin. Since ViLBERT uses image features from Faster R-CNN, you also have to downloaded these for all ImageCoDe images here: Google Drive link. Save the file as data/rcnn-features36-36.lmdb. The same procedure applies for UNITER.

The format for data/train_data.json looks like this:

{
  "MSR-VTT-videoTrainValVideo_video2044-shot1_0": {
    "6": "a mom holding her babies in the middle of the picture, no other image intervenes with the image.",
    "7": "The image is fading between a woman holding a baby and a woman sitting with a red background. The hands of the woman sitting aren't visible."
  },
  "video-storytelling-videochristmas_56Nm66j-i5Q-shot14_2": {
  "..."
  }
}

And the images under data/ have the following structure. Each folder contains 10 images. If the images are video frames, the number X in imgX.jpg indicates the frame number:

  .
  ├── MSR-VTT-videoTrainValVideo_video2044-shot1_0
      │   ├── img0.jpg
      │   ├── img7.jpg
      │   ├── ...
  ├── video-storytelling-videochristmas_56Nm66j-i5Q-shot14_2
      │   ├── ...

Leaderboard

Based on this you can train your model and test on the unlabeled test set:

{
  "MSR-VTT-videoTestVideo_video7763-shot2_1": [
    "The team name on shirt is visible without a number, but all letters can be seen for team name.",
    "the player can be seen with him on the left close to the logo on the pitch on the right and can be clearly seen"
  ],
  "...":
  ["..."]
}

In order to appear on the leaderboard, please format your results in the following format:

{
  "MSR-VTT-videoTestVideo_video7763-shot2_1": [
    1,
    2
  ],
  "...":
  ["..."]
}

Where the example here with "1" and "2" represent image indices ranging from 0 to 9. You can submit to the leaderboard by sending your test set file (or a download link) to [email protected] and we will update the leaderboard quickly (max. 1-2 days). The leaderboard is maintained on the project website and might change its submission procedure at some point.

Installations

Run install.sh for running CLIP experiments. For VilBERT follow the instructions for volta.

Code

Code for CLIP is under baselines/clip and and code for ViLBERT/UNITER is under baselines/crossencoders.

For details commands to run each model variant shown in the paper, have a look at the README in baselines.

For example to train the best performing model CLIP+TemporalEmbeddings, run:

python3 contextual.py --lr 2e-6 --lr_head 1e-4 -b 36 -m ViT-B/16 --fusion mult -a gelu --logit_scale 1000 --finetuned_checkpoint_path checkpoints/CONTRA_clip_best__36_4e-06_30_1395526.pt --add_input --frozen_clip --positional

Data Analysis

Our manual annotation of various phenomena (negation, nuances, ...) in our validation set can be found under data/manual_annotation_valid.yaml

License

This work is licensed under the MIT license. See LICENSE for details. Third-party software and data sets are subject to their respective licenses.
If you want to cite our paper, please use:

@inproceedings{krojer_contextual_2022,
  address = {Online},
  title = {Image Retrieval from Contextual Descriptions},
  booktitle = {Proceedings of the 60th {Annual} {Meeting} of the {Association} for {Computational} {Linguistics},
  publisher = {Association for Computational Linguistics},
  author = {Krojer, Benno and Adlakha, Vaibhav and Vineet, Vibhav and Goyal, Yash and Ponti, Edoardo and Reddy, Siva},
  month = may,
  year = {2022},
}

Acknowledgement

Our data (specifically the image sets) are built upon 3 video dataset and Open Images:

We also the volta repository for ViLBERT and UNITER baseline variants

For questions or feedback, don't hesitate to contact the author: [email protected]

Owner
McGill NLP
Research group within McGill University and Mila focusing on various topics in natural language processing.
McGill NLP
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022