Apply our monocular depth boosting to your own network!

Overview

MergeNet - Boost Your Own Depth

Boost custom or edited monocular depth maps using MergeNet

Input Original result After manual editing of base
patchselection patchselection patchselection

You can find our Google Colaboratory notebook here. Open In Colab

In this repository, we present a stand-alone implementation of our merging operator we use in our recent work:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Video, Main pdf, Supplementary pdf, Project Page. Github repo.

If you are an artist:

Although we are presenting few simple examples here, both low-resolution and high-resolution depth maps can be freely edited using any program before merging with our method.

Feel free to experiment and share your results with us!

If you are a researcher developing a new (CNN-based) Monocular Depth Estimation method:

This repository is a full implementation of our double-estimation framework. Double estimation uses a base-resolution result and a high-resolution result. The optimum high-resolution for a given image, R20 resolution, depends on the receptive field size of your network (the training resolution is a good approximation) and the image content. The code for R20 computation is also provided here.

To demonstrate the high-resolution performance of your network, you can simply generate the base and high-res estimates on any dataset and use this repository to apply our double estimation method to your own work.

Our Github repo for the main project also includes the implementation of our detail-focused monocular depth performance metric D^3R.

Mix'n'match depths from different networks or use your own custom-edited ones.

In the image below, we show that choosing a different base estimate can improve the depth for the city:

Input Base and details from [MiDaS][1] Base from [LeRes][2] and details from [MiDaS][1]
patchselection patchselection patchselection

To get the optimal result for a given scene, you may want to try multiple methods in both low- and high-resolutions and pick your favourite for each case.

Input Base from [MiDaS v3 / DPT][3] Base from [MiDaS v3 / DPT][3] and details from [MiDaS v2][1]
patchselection patchselection patchselection

Moreover, you can simply edit the base image before merging using any image editing tool for more creative control:

Input Base and details from [MiDaS][1] With edited base from [MiDaS][1]
patchselection patchselection patchselection

How does it work?

merge

This repository lets you combine two input depth maps with certain characteristics.

Low-res base depth

The network uses the base estimate as the main structure of the scene. Typically this is the default-resolution result of a monocular depth estimation network at around 300x300 resolution.

This base estimate is a good candidate for editing due to its low-resolution nature.

Monocular depth estimation methods with geometric consistency optimizations can be used as the base estimation to merge details onto a consistent base.

High-res depth with details

The merging operation transfers the details from this high-resolution depth map onto the structure provided by the low-resolution base pair.

The high-resolution input does not need structural consistency and is typically generated by feeding the input image at a much higher resolution than the training resolution of a given monocular depth estimation network.

You can compute the optimal high-resolution estimation size for a given image using our R20 resolution calculator, also provided in this repository. You can also simply use 2x or 3x resolution to simply add more details.

For more information on this project:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Main pdf, Supplementary pdf, Project Page. Github repo.

video

Citation

This implementation is provided for academic use only. Please cite our paper if you use this code or any of the models.

@INPROCEEDINGS{Miangoleh2021Boosting,
author={S. Mahdi H. Miangoleh and Sebastian Dille and Long Mai and Sylvain Paris and Ya\u{g}{\i}z Aksoy},
title={Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging},
journal={Proc. CVPR},
year={2021},
}

Credits

The "Merge model" code skeleton (./pix2pix folder) was adapted from the [pytorch-CycleGAN-and-pix2pix][4] repository.
[1]: https://github.com/intel-isl/MiDaS/tree/v2
[2]: https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
[3]: https://github.com/isl-org/DPT
[4]: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix \

Owner
Computational Photography Lab @ SFU
Computational Photography Lab at Simon Fraser University, lead by @yaksoy
Computational Photography Lab @ SFU
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
LBK 35 Dec 26, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022