Types that make coding in Python quick and safe.

Overview

Type[T]

PyPI Python Versions Build Status Coverage Status Code Quality

Types that make coding in Python quick and safe.

Type[T] works best with Python 3.6 or later. Prior to 3.6, object types must use comment type hint syntax.

Installation

Install it using pip:

pip install typet

Features

  • An Object base class that eliminates boilerplate code and verifies and coerces types when possible.
  • Validation types that, when instantiated, create an instance of a specific type and verify that they are within the user defined boundaries for the type.

Quick Start: Creating a Person

Import the Type[T] types that you will use.

from typet import Bounded, Object, String
  • Object, for composing complex objects
  • Bound to describe a type that validates its value is of the correct type and within bounds upon instantiation
  • String, which will validate that it is instantiated with a string with a length within the defined bounds.

Create Type Aliases That Describe the Intent of the Type

Age = Bounded[int, 0:150]
Name = String[1:50]
Hobby = String[1:300]

In this example, a Person has an Age, which is an integer between 0 and 150, inclusive; a Name which must be a non-empty string with no more than 50 characters; and finally, a Hobby, which is a non-empty string with no more than 300 characters.

Compose a Person object Using Type Aliases

class Person(Object):
    name: Name
    surname: Name
    age: Age
    hobby: Hobby = None

Assigning a class attribute sets that value as the default value for instances of the Object. In this instance, hobby is assigned a default value of None; by convention, this tells Python that the type is Optional[Hobby], and Type[T] will allow None in addition to strings of the correct length.

Put It All Together

from typet import Bounded, Object, String

Age = Bounded[int, 0:150]
Name = String[1:50]
Hobby = String[1:300]

class Person(Object):
    name: Name
    surname: Name
    age: Age
    hobby: Hobby = None

Person is now a clearly defined and typed object with an intuitive constructor, hash method, comparison operators and bounds checking.

Positional arguments will be in the order of the definition of class attributes, and keyword arguments are also acceptable.

jim = Person('Jim', 'Coder', 23, 'Python')
bob = Person('Robert', 'Coder', hobby='C++', age=51)

Python 2.7 to 3.5

Type[T] supports PEP 484 class comment type hints for defining an Object.

from typing import Optional

from typet import Bounded, Object, String

Age = Bounded[int, 0:150]
Name = String[1:50]
Hobby = String[1:300]

class Person(Object):
    name = None  # type: Name
    surname = None  # type: Name
    age = None  # type: Age
    hobby = None  # type: Optional[Hobby]

Note that, because Python prior to 3.6 cannot annotate an attribute without defining it, by convention, assigning the attribute to None will not imply that it is optional; it must be specified explicitly in the type hint comment.

Object Types

Object

One of the cooler features of Type[T] is the ability to create complex objects with very little code. The following code creates an object that generates properties from the annotated class attributes that will ensure that only values of int or that can be coerced into int can be set. It also generates a full suite of common comparison methods.

from typet import Object

class Point(Object):
    x: int
    y: int

Point objects can be used intuitively because they generate a standard __init__ method that will allow positional and keyword arguments.

p1 = Point(0, 0)      # Point(x=0, y=0)
p2 = Point('2', 2.5)  # Point(x=2, y=2)
p3 = Point(y=5, x=2)  # Point(x=2, y=5)
assert p1 < p2        # True
assert p2 < p1        # AssertionError

A close equivalent traditional class would be much larger, would have to be updated for any new attributes, and wouldn't support more advanced casting, such as to types annotated using the typing module:

class Point(object):

    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return 'Point(x={x}, y={y})'.format(x=self.x, y=self.y)

    def __setattr__(self, name, value):
        if name in ('x', 'y'):
            value = int(value)
        super(Point, self).__setattr__(name, value)

    def __eq__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) == (other.x, other.y)

    def __ne__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) != (other.x, other.y)

    def __lt__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) < (other.x, other.y)

    def __le__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) <= (other.x, other.y)

    def __gt__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) > (other.x, other.y)

    def __ge__(self, other):
        if other.__class__ is not self.__class__:
            return NotImplemented
        return (self.x, self.y) >= (other.x, other.y)

    def __hash__(self):
        return hash((self.x, self.y))

Attributes can be declared optional either manually, by using typing.Optional or by using the PEP 484 implicit optional of a default value of None.

from typing import Optional

from typet import Object

class Point(Object):
    x: Optional[int]
    y: int = None

p1 = Point()   # Point(x=None, y=None)
p2 = Point(5)  # Point(x=5, y=None)

StrictObject

By default, Object will use cast from typingplus to attempt to coerce any values supplied to attributes to the annotated type. In some cases, it may be preferred to disallow casting and only allow types that are already of the correct type. StrictObject has all of the features of Object, but will not coerce values into the annotated type.

from typet import StrictObject

class Point(StrictObject):
    x: int
    y: int

Point(0, 0)      # Okay
Point('2', 2.5)  # Raises TypeError

StrictObject uses is_instance from typingplus to check types, so it's possible to use types from the typing library for stricter checking.

from typing import List

from typet import StrictObject

class IntegerContainer(StrictObject):
    integers: List[int]

IntegerContainer([0, 1, 2, 3])          # Okay
IntegerContainer(['a', 'b', 'c', 'd'])  # Raises TypeError

Validation Types

Type[T] contains a suite of sliceable classes that will create bounded, or validated, versions of those types that always assert their values are within bounds; however, when an instance of a bounded type is instantiated, the instance will be of the original type.

Bounded

Bounded can be sliced with either two arguments or three. The first argument is the type being bound. The second is a slice containing the upper and lower bounds used for comparison during instantiation.

from typet import Bounded

BoundedInt = Bounded[int, 10:20]

BoundedInt(15)  # Okay
type(x)         # <class 'int'>
BoundedInt(5)   # Raises ValueError

Optionally, a third argument, a function, may be supplied that will be run on the value before the comparison.

from typet import Bounded

LengthBoundedString = Bounded[str, 1:3, len]

LengthBoundedString('ab')    # Okay
LengthBoundedString('')      # Raises ValueError
LengthBoundedString('abcd')  # Raises ValueError

Length

Because len is a common comparison method, there is a shortcut type, Length that takes two arguments and uses len as the comparison method.

from typing import List

from typet import Length

LengthBoundedList = Length[List[int], 1:3]

LengthBoundedList([1, 2])        # Okay
LengthBoundedList([])            # Raises ValueError
LengthBoundedList([1, 2, 3, 4])  # Raises ValueError

String

str and len are commonly used together so a special type, String, has been added to simplify binding strings to specific lengths.

from typet import String

ShortString = String[1:3]

ShortString('ab')    # Okay
ShortString('')      # Raises ValueError
ShortString('abcd')  # Raises ValueError

Note that, on Python 2, String instantiates unicode objects and not str.

Metaclasses and Utilities

Singleton

Singleton will cause a class to allow only one instance.

from typet import Singleton

class Config(metaclass=Singleton):
    pass

c1 = Config()
c2 = Config()
assert c1 is c2  # Okay

Singleton supports an optional __singleton__ method on the class that will allow the instance to update if given new parameters.

from typet import Singleton

class Config(metaclass=Singleton):

    def __init__(self, x):
        self.x = x

    def __singleton__(self, x=None):
        if x:
            self.x = x

c1 = Config(1)
c1.x                   # 1
c2 = Config()          # Okay because __init__ is not called.
c2.x                   # 1
c3 = Config(3)         # Calls __singleton__ if it exists.
c1.x                   # 3
c2.x                   # 3
c3.x                   # 3
assert c1 is c2 is c3  # Okay

@singleton

Additionally, there is a decorator, @singleton that can be used make a class a singleton, even if it already uses another metaclass. This is convenient for creating singleton Objects.

from typet import Object, singleton

@singleton
class Config(Object):
    x: int

c1 = Config(1)
c2 = Config()    # Okay because __init__ is not called.
assert c1 is c2  # Okay

@metaclass

Type[T] contains a class decorator, @metaclass, that will create a derivative metaclass from the given metaclasses and the metaclass used by the decorated class and recreate the class with the derived metaclass.

Most metaclasses are not designed to be used in such a way, so careful testing must be performed when this decorator is to be used. It is primarily intended to ease use of additional metaclasses with Objects.

from typet import metaclass, Object, Singleton

@metaclass(Singleton)
class Config(Object):
    x: int

c1 = Config(1)
c2 = Config()    # Okay because __init__ is not called.
assert c1 is c2  # Okay
Comments
  • The Singleton meta class unexpectedly raises a TypeError when we thought __instance__ existed

    The Singleton meta class unexpectedly raises a TypeError when we thought __instance__ existed

    In [4]: _RcliConfig.call()

    TypeError Traceback (most recent call last) in () ----> 1 _RcliConfig.call()

    ~/rcli/venv/lib/python3.6/site-packages/typet/meta.py in call(cls, args, **kwargs) 78 else: 79 try: ---> 80 cls.instance.singleton(args, **kwargs) # type: ignore 81 except AttributeError: 82 pass

    TypeError: 'NoneType' object is not callable

    The code in question is here:

    https://github.com/contains-io/typet/blob/master/typet/meta.py#L64

    opened by zancas 4
  • Add base classes SingletonObject and StrictSingletonObject

    Add base classes SingletonObject and StrictSingletonObject

    Create a SingletonObject by creating a private metaclass that inherits from Singleton and _ObjectMeta and a metaclass for a StrictSingletonObject that inherits from Singleton and _StrictObjectMeta.

    The proposed use case would be a global settings object:

    from typet import SingletonObject, File
    
    class _Configuration(SingletonObject):
        config: File = '~/.my_config'
    
    settings = _Configuration()
    
    enhancement 
    opened by dangle 1
  • Add support for type comments.

    Add support for type comments.

    Because the annotations are read during the metaclass before the class is created, it may be necessary to add support for reading the type hint comments in the metaclass.

    enhancement 
    opened by dangle 1
  • Register validation types as the sliced type.

    Register validation types as the sliced type.

    It should be possible to run this test:

    from typingplus import is_instance
    from typet import Bounded
    assert is_instance(5, Bounded[int, 0:10])
    

    I believe this causes an issue when using validation types with StrictObject.

    This can be done by setting __instancecheck__ and __subclasscheck__ in BoundedMeta._BoundedSubclass.

    bug 
    opened by dangle 1
  • Break package into multiple modules.

    Break package into multiple modules.

    typet/__init__.py is becoming unwieldy. It should be broken into multiple packages and imported into the package with wildcards.

    Initial proposed packages:

    • typet
    • typet.path
    • typet.validation
    • typet.object
    refactor 
    opened by dangle 0
  • Path validation objects should use pathlib.

    Path validation objects should use pathlib.

    The path validation objects, File, Dir, Path, and ExistingPath should instantiate pathlib objects instead of strings. They should also accept pathlib objects.

    A check to import pathlib2 will need to be added to setup.py.

    bug 
    opened by dangle 0
  • Using the @singleton errors on default metaclass.

    Using the @singleton errors on default metaclass.

    When using @singleton on a class that does not inherit from Object (no other metaclasses defined) throws an exception.

    Traceback (most recent call last):
      File "<input>", line 1, in <module>
        @singleton
      File "/home/dangle/Projects/contains.io/containment/.tox/py36/lib/python3.6/site-packages/typet/meta.py", line 58, in _inner
        class _Meta(base, _Meta):  # pylint: disable=function-redefined
    TypeError: Cannot create a consistent method resolution
    order (MRO) for bases type, Singleton
    
    bug 
    opened by dangle 0
  • Add support for Generics in Object and StrictObject

    Add support for Generics in Object and StrictObject

    Currently, using Generics with Object is a pain. Initial support for casting and type validation exist, but creating the class itself is awkward as it requires creating a metaclass.

    from typet import Object
    from typing import Generic, GenericMeta, TypeVar
    
    T = TypeVar('T')
    
    class Meta(type(Object), GenericMeta): ...
    
    class MyObject(Object, Generic[T], meta=Meta):
        value: T
    
    enhancement 
    opened by dangle 0
  • Non Object attributes violate the expectations of the __hash__ function.

    Non Object attributes violate the expectations of the __hash__ function.

    If I make a proper typet Object, I can still assign to its attributes at run time, subsequent comparison or hash operations on the resulting instance will now return unexpected results. I believe the solution is to add logic to set_attr to prevent non-Object, or StrictObject assignment.

    opened by zancas 1
  • Validation types do not work with mypy.

    Validation types do not work with mypy.

    mypy reports validation objects as invalid type aliases.

    Additionally, if a validation type is used as a class annotation without being aliased, mypy ends analysis with an invalid syntax error.

    See python/mypy#4285.

    blocked 
    opened by dangle 0
Owner
Contains
Contains
📖 Generate markdown API documentation from Google-style Python docstring. The lazy alternative to Sphinx.

lazydocs Generate markdown API documentation for Google-style Python docstring. Getting Started • Features • Documentation • Support • Contribution •

Machine Learning Tooling 118 Dec 31, 2022
Compare two CSV files for differences. Colorize the differences and align the columns.

pretty-csv-diff Compare two CSV files for differences. Colorize the differences and align the columns. Command-Line Example Command-Line Usage usage:

Devon 6 Dec 29, 2022
1.3k Jan 08, 2023
Fully typesafe, Rust-like Result and Option types for Python

safetywrap Fully typesafe, Rust-inspired wrapper types for Python values Summary This library provides two main wrappers: Result and Option. These typ

Matthew Planchard 32 Dec 25, 2022
📘 OpenAPI/Swagger-generated API Reference Documentation

Generate interactive API documentation from OpenAPI definitions This is the README for the 2.x version of Redoc (React-based). The README for the 1.x

Redocly 19.2k Jan 02, 2023
A python package to avoid writing and maintaining duplicated python docstrings.

docstring-inheritance is a python package to avoid writing and maintaining duplicated python docstrings.

Antoine Dechaume 15 Dec 07, 2022
A `:github:` role for Sphinx

sphinx-github-role A github role for Sphinx. Usage Basic usage MyST: :caption: index.md See {github}`astrojuanlu/sphinx-github-role#1`. reStructuredT

Juan Luis Cano Rodríguez 4 Nov 22, 2022
Beautiful static documentation generator for OpenAPI/Swagger 2.0

Spectacle The gentleman at REST Spectacle generates beautiful static HTML5 documentation from OpenAPI/Swagger 2.0 API specifications. The goal of Spec

Sourcey 1.3k Dec 13, 2022
100 Days of Code Learning program to keep a habit of coding daily and learn things at your own pace with help from our remote community.

100 Days of Code Learning program to keep a habit of coding daily and learn things at your own pace with help from our remote community.

Git Commit Show by Invide 41 Dec 30, 2022
Sphinx Bootstrap Theme

Sphinx Bootstrap Theme This Sphinx theme integrates the Bootstrap CSS / JavaScript framework with various layout options, hierarchical menu navigation

Ryan Roemer 584 Nov 16, 2022
A swagger tool for tornado, using python to write api doc!

SwaggerDoc About A swagger tool for tornado, using python to write api doc! Installation pip install swagger-doc Quick Start code import tornado.ioloo

aaashuai 1 Jan 10, 2022
Version bêta d'un système pour suivre les prix des livres chez Books to Scrape,

Version bêta d'un système pour suivre les prix des livres chez Books to Scrape, un revendeur de livres en ligne. En pratique, dans cette version bêta, le programme n'effectuera pas une véritable surv

Mouhamed Dia 1 Jan 06, 2022
Sphinx theme for readthedocs.org

Read the Docs Sphinx Theme This Sphinx theme was designed to provide a great reader experience for documentation users on both desktop and mobile devi

Read the Docs 4.3k Dec 31, 2022
A clean customizable documentation theme for Sphinx

A clean customizable documentation theme for Sphinx

Pradyun Gedam 1.5k Jan 06, 2023
Yet Another MkDocs Parser

yamp Motivation You want to document your project. You make an effort and write docstrings. You try Sphinx. You think it sucks and it's slow -- I did.

Max Halford 10 May 20, 2022
PythonCoding Tutorials - Small functions that would summarize what is needed for python coding

PythonCoding_Tutorials Small functions that would summarize what is needed for p

Hosna Hamdieh 2 Jan 03, 2022
Sane and flexible OpenAPI 3 schema generation for Django REST framework.

drf-spectacular Sane and flexible OpenAPI 3.0 schema generation for Django REST framework. This project has 3 goals: Extract as much schema informatio

T. Franzel 1.4k Jan 08, 2023
FxBuzzly - Buzzly.art links do not embed in Discord, this fixes them (rudimentarily)

fxBuzzly Buzzly.art links do not embed in Discord, this fixes them (rudimentaril

Dania Rifki 2 Oct 27, 2022
Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software.

Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software. We organize webinars and workshops on different technical topics and making Open Source contributi

Mozilla-Campus-Club-Cummins 8 Jun 15, 2022
YAML metadata extension for Python-Markdown

YAML metadata extension for Python-Markdown This extension adds YAML meta data handling to markdown with all YAML features. As in the original, metada

Nikita Sivakov 14 Dec 30, 2022