Course materials for: Geospatial Data Science

Overview

Course materials for: Geospatial Data Science

These course materials cover the lectures for the course held for the first time in spring 2022 at IT University of Copenhagen. Public course page: https://learnit.itu.dk/local/coursebase/view.php?ciid=940
Materials were slightly improved and reordered after the course.

Prerequisites: Basics in data science (including statistics, Python and pandas)
Ideal level/program: 1st year Master in Data Science

Topics

alt text

· 1. Geometric objects · 2. Geospatial data in Python · 3. Choropleth mapping · 4. Spatial weights · 5. Spatial autocorrelation · 6. Spatial clustering · 7. Point pattern analysis · 8. OpenStreetMap and OSMnx · 9. Spatial networks · 10. Bicycle networks · 11. Individual mobility · 12. Mobility patterns · 13. Aggregate mobility and urban scaling · 14. Sustainable mobility and geospatial epidemiology ·

Exercise materials and tutorials

See: https://github.com/anerv/GDS2022_exercises

Schedule

alt text

Sources

The course materials were adapted/inspired from a number of sources, standing on the shoulders of giants, ordered by appearance in the course:

Main sources

Percentages are approximative.

Other major sources and further materials

More sources are referenced within the slides and notebooks.

License

All materials were used for educational, non-commercial reasons only. Feel free to use as you wish for the same purpose, at your own risk. For other re-use questions please consult the license of the respective source. Our main sources use the CC BY-SA 4.0 license so we use it too.

Credits

Lectures: Michael Szell
Exercises and tutorials: Ane Rahbek Vierø & Anastassia Vybornova

Thanks to all our main sources for being so helpful and open with your materials! Special thanks to Adéla Sobotkova for helpful discussions and materials concerning syllabus, exam form, and project description, and to Vedran Sekara for slide materials.

Owner
Michael Szell
Urban data science 🕸️ Sustainable mobility networks 🚲 Data viz 🌌 Created: GrowBike.Net · @nerdsitu · whatthestreet.com · HubCab · Pardus.at
Michael Szell
Fast syllable estimation library based on pattern matching.

Syllables: A fast syllable estimator for Python Syllables is a fast, simple syllable estimator for Python. It's intended for use in places where speed

ProseGrinder 26 Dec 14, 2022
Fully reproducible, Dockerized, step-by-step, tutorial on how to mock a "real-time" Kafka data stream from a timestamped csv file. Detailed blog post published on Towards Data Science.

time-series-kafka-demo Mock stream producer for time series data using Kafka. I walk through this tutorial and others here on GitHub and on my Medium

Maria Patterson 26 Nov 15, 2022
Speed up Sphinx builds by selectively removing toctrees from some pages

Remove toctrees from Sphinx pages Improve your Sphinx build time by selectively removing TocTree objects from pages. This is useful if your documentat

Executable Books 8 Jan 04, 2023
Dev Centric Tools for Mkdocs Based Documentation

docutools MkDocs Documentation Tools For Developers This repo is providing a set of plugins for mkdocs material compatible documentation. It is meant

Axiros GmbH 14 Sep 10, 2022
[Unofficial] Python PEP in EPUB format

PEPs in EPUB format This is a unofficial repository where I stock all valid PEPs in the EPUB format. Repository Cloning git clone --recursive Mickaël Schoentgen 9 Oct 12, 2022

Make posters from Markdown files.

MkPosters Create posters using Markdown. Supports icons, admonitions, and LaTeX mathematics. At the moment it is restricted to the specific layout of

Patrick Kidger 243 Dec 20, 2022
advance python series: Data Classes, OOPs, python

Working With Pydantic - Built-in Data Process ========================== Normal way to process data (reading json file): the normal princiople, it's f

Phung Hưng Binh 1 Nov 08, 2021
A Material Design theme for MkDocs

A Material Design theme for MkDocs Create a branded static site from a set of Markdown files to host the documentation of your Open Source or commerci

Martin Donath 12.3k Jan 04, 2023
A curated list of awesome mathematics resources

A curated list of awesome mathematics resources

Cyrille Rossant 6.7k Jan 05, 2023
Leetcode Practice

LeetCode Practice Description This is my LeetCode Practice. Visit LeetCode Website for detailed question description. The code in this repository has

Leo Hsieh 75 Dec 27, 2022
Watch a Sphinx directory and rebuild the documentation when a change is detected. Also includes a livereload enabled web server.

sphinx-autobuild Rebuild Sphinx documentation on changes, with live-reload in the browser. Installation sphinx-autobuild is available on PyPI. It can

Executable Books 440 Jan 06, 2023
Żmija is a simple universal code generation tool.

Żmija Żmija is a simple universal code generation tool. It is intended to be used as a means to generate code that is both efficient and easily mainta

Adrian Samoticha 2 Nov 23, 2021
Anomaly Detection via Reverse Distillation from One-Class Embedding

Anomaly Detection via Reverse Distillation from One-Class Embedding Implementation (Official Code ⭐️ ⭐️ ⭐️ ) Environment pytorch == 1.91 torchvision =

73 Dec 19, 2022
The tutorial is a collection of many other resources and my own notes

Why we need CTC? --- looking back on history 1.1. About CRNN 1.2. from Cross Entropy Loss to CTC Loss Details about CTC 2.1. intuition: forward algor

手写AI 7 Sep 19, 2022
A simple XLSX/CSV reader - to dictionary converter

sheet2dict A simple XLSX/CSV reader - to dictionary converter Installing To install the package from pip, first run: python3 -m pip install --no-cache

Tomas Pytel 216 Nov 25, 2022
Your Project with Great Documentation.

Read Latest Documentation - Browse GitHub Code Repository The only thing worse than documentation never written, is documentation written but never di

Timothy Edmund Crosley 809 Dec 28, 2022
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.

Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou

Lukas Ruff 276 Jan 04, 2023
Code for our SIGIR 2022 accepted paper : P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-based Learning and Pre-finetuning

P3 Ranker Implementation for our SIGIR2022 accepted paper: P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-bas

14 Jan 04, 2023
The purpose of this project is to share knowledge on how awesome Streamlit is and can be

Awesome Streamlit The fastest way to build Awesome Tools and Apps! Powered by Python! The purpose of this project is to share knowledge on how Awesome

Marc Skov Madsen 1.5k Jan 07, 2023
xeuledoc - Fetch information about a public Google document.

xeuledoc - Fetch information about a public Google document.

Malfrats Industries 651 Dec 27, 2022