Official code for the ICLR 2021 paper Neural ODE Processes

Related tags

Deep Learningndp
Overview

Neural ODE Processes

Official code for the paper Neural ODE Processes (ICLR 2021).

Neural ODE Processes

Abstract

Neural Ordinary Differential Equations (NODEs) use a neural network to model the instantaneous rate of change in the state of a system. However, despite their apparent suitability for dynamics-governed time-series, NODEs present a few disadvantages. First, they are unable to adapt to incoming data-points, a fundamental requirement for real-time applications imposed by the natural direction of time. Second, time-series are often composed of a sparse set of measurements that could be explained by many possible underlying dynamics. NODEs do not capture this uncertainty. In contrast, Neural Processes (NPs) are a new class of stochastic processes providing uncertainty estimation and fast data-adaptation, but lack an explicit treatment of the flow of time. To address these problems, we introduce Neural ODE Processes (NDPs), a new class of stochastic processes determined by a distribution over Neural ODEs. By maintaining an adaptive data-dependent distribution over the underlying ODE, we show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points. At the same time, we demonstrate that NDPs scale up to challenging high-dimensional time-series with unknown latent dynamics such as rotating MNIST digits.

@inproceedings{
    norcliffe2021neural,
    title={Neural {\{}ODE{\}} Processes},
    author={Alexander Norcliffe and Cristian Bodnar and Ben Day and Jacob Moss and Pietro Li{\`o}},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=27acGyyI1BY}
}

Getting started

For development, we used Python 3.8.5 and PyTorch 1.8. First, install PyTorch using the official page and then run the following command to install the requited packages:

pip install -r requirements.txt

Running the experiments

To run the 1D regression experiments, run one of the following commands:

python -m main.1d_regression --model ndp --exp_name ndp_sine --data sine --epochs 30
python -m main.1d_regression --model ndp --exp_name ndp_exp --data exp --epochs 30
python -m main.1d_regression --model ndp --exp_name ndp_linear --data linear --epochs 30
python -m main.1d_regression --model ndp --exp_name ndp_oscil --data oscil --epochs 30

To run the 2D regression experiments use one of the following

python -m main.2d_regression --model ndp --exp_name ndp_lv --data deterministic_lv --epochs 100
python -m main.2d_regression --model ndp --exp_name ndp_hw --data handwriting --epochs 100

To run the high-dimensional regression experiments use:

python -m main.img_regression --model ndp --exp_name ndp_vrm --data VaryRotMNIST --use_y0 --epochs 50
python -m main.img_regression --model ndp --exp_name ndp_rr --data RotMNIST --use_y0 --epochs 50

Datasets

To use the rotating MNIST datasets, run the script below in order to download the required data:

bash data/download_datasets.sh

Credits

Our code relies to a great extent on the Neural Process implementation by Emilien Dupont. The RotMNIST dataset code adapts the ODE2VAE code.

Owner
Cristian Bodnar
PhD Student University of Cambridge | Former AI Resident @google X & research intern at Google Brain
Cristian Bodnar
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023