Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Overview

Total-Text-Dataset (Official site)

Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.)

Updated on March 19, 2020 (Query on the new groundtruth of test set)

Updated on Sept. 08, 2019 (New training groundtruth of Total-Text is now available)

Updated on Sept. 07, 2019 (Updated Guided Annotation toolbox for scene text image annotation)

Updated on Sept. 07, 2019 (Updated baseline as to our IJDAR)

Updated on August 01, 2019 (Extended version with new baseline + annotation tool is accepted at IJDAR)

Updated on May 30, 2019 (Important announcement on Total-Text vs. ArT dataset)

Updated on April 02, 2019 (Updated table ranking with default vs. our proposed DetEval)

Updated on March 31, 2019 (Faster version DetEval.py, support Python3. Thank you princewang1994.)

Updated on March 14, 2019 (Updated table ranking with evaluation protocol info.)

Updated on November 26, 2018 (Table ranking is included for reference.)

Updated on August 24, 2018 (Newly added Guided Annotation toolbox folder.)

Updated on May 15, 2018 (Added groundtruth in '.txt' format.)

Updated on May 14, 2018 (Added feature - 'Do not care' candidates filtering is now available in the latest python scripts.)

Updated on April 03, 2018 (Added pixel level groundtruth)

Updated on November 04, 2017 (Added text level groundtruth)

Released on October 27, 2017

News

  • We received some questions in regard to the new groundtruth for the test set of Total-Text. Here is an update. We do not release a new version of the test set groundtruth because

     1) there is no need of standardising the length of the groundtruth vertices for testing purpose, it was proposed to facilitate training only, and
     2) a new version of groundtruth would make the previous benchmarks irrelevant.
    

Do contact us if you think there is a valid reason to require the new groundtruth for the test set, we shall discuss about it.

  • TOTAL-TEXT is a word-level based English curve text dataset. If you are interested in text-line based dataset with both English and Chinese instances, we highly recommend you to refer SCUT-CTW1500. In addition, a Robust Reading Challenge on Arbitrary-Shaped Text (RRC-ArT), which is extended from Total-Text and SCUT-CTW1500, was held at ICDAR2019 to stimulate more innovative ideas on the arbitrary-shaped text reading task. Congratulations to all winners and challengers. The technical report of ArT can be found on at this https URL.

Important Announcement

Total-Text and SCUT-CTW1500 are now part of the training set of the largest curved text dataset - ArT (Arbitrary-Shaped Text dataset). In order to retain the validity of future benchmarking on Total-Text datasets, the test-set images of Total-Text should be removed (with the corresponding ID provided HERE) from the ArT dataset shall one intend to leverage the extra training data from the ArT dataset. We count on the trust of the research community to perform such removal operation to attain the fairness of the benchmarking.

Table Ranking

  • The results from recent papers on Total-Text dataset are listed below where P=Precision, R=Recall & F=F-score.
  • If your result is missing or incorrect, please do not hesisate to contact us.
  • The baseline scores are based on our proposed [Poly-FRCNN-3] in this folder.
  • *Pascal VOC IoU metric; **Polygon Regression

Detection Leaderboard

Method Reported
on paper
DetEval
(tp=0.4, tr=0.8)
(Default)
DetEval
(tp=0.6, tr=0.7)
(New Proposal)
Published at
P R F P R F P R F
Our Baseline [paper] 78.0 68.0 73.0 - - - 78.0 68.0 73.0 IJDAR2020
CRAFTS [paper] 89.5 85.4 87.4 - - - - - - ECCV2020
#ASTS_Weakly-ResNet101 (E2E) [paper] - - 87.3 - - - - - - TIP2020
TextFuseNet [paper] 89.0 85.3 87.1 - - - - - - IJCAI2020
#Boundary (E2E) [paper] 88.9 85.0 87.0 - - - - - - AAAI2020
PolyPRNet [paper] 88.1 85.3 86.7 - - - - - - ACCV2020
#Qin et al. (E2E) [paper] 87.8 85.0 86.4 - - - - - - ICCV2019
100%Poly [paper] 88.2 83.3 85.6 - - - - - - arXiv:2012
ContourNet [paper] 86.9 83.9 85.4 - - - - - - CVPR2020
#Text Perceptron (E2E) [paper] 88.8 81.8 85.2 - - - - - - AAAI2020
PAN-640 [paper] 89.3 81.0 85.0 - - - - - - ICCV2019
DB-ResNet50 (800) [paper] 87.1 82.5 84.7 - - - - - - AAAI2020
TextCohesion [paper] 88.1 81.4 84.6 - - - - - - arXiv:1904
Feng et al. [paper] 87.3 81.1 84.1 - - - - - - IJCV2020
ReLaText [paper] 84.8 83.1 84.0 - - - - - - arXiv:2003
CRAFT [paper] 87.6 79.9 83.6 - - - - - - CVPR2019
LOMO MS [paper] 87.6 79.3 83.3 - - - - - - CVPR2019
SPCNet [paper] 83.0 82.8 82.9 - - - - - - AAAI2019
#ABCNet (E2E) [paper] 85.4 80.1 82.7 - - - - - - CVPR2020
ICG [paper] 82.1 80.9 81.5 - - - - - - PR2019
FTSN [paper] *84.7 *78.0 *81.3 - - - - - - ICPR2018
PSENet-1s [paper] 84.02 77.96 80.87 - - - - - - CVPR2019
1TextField [paper] 81.2 79.9 80.6 76.1 75.1 75.6 83.0 82.0 82.5 TIP2019
#TextDragon (E2E) [paper] 85.6 75.7 80.3 - - - - - - ICCV2019
CSE [paper] 81.4
(**80.9)
79.7
(**80.3)
80.2
(**80.6)
- - - - - - CVPR2019
MSR [paper] 85.2 73.0 78.6 82.7 68.3 74.9 81.4 72.5 76.7 arXiv:1901
ATTR [paper] 80.9 76.2 78.5 - - - - - - CVPR2019
TextSnake [paper] 82.7 74.5 78.4 - - - - - - ECCV2018
1CTD [paper] 74.0 71.0 73.0 60.7 58.8 59.8 76.5 73.8 75.2 PR2019
#TextNet (E2E) [paper] 68.2 59.5 63.5 - - - - - - ACCV2018
#,2Mask TextSpotter (E2E) [paper] 69.0 55.0 61.3 68.9 62.5 65.5 82.5 75.2 78.6 ECCV2018
CENet [paper] 59.9 54.4 57.0 - - - - - - ACCV2018
#Textboxes (E2E) [paper] 62.1 45.5 52.5 - - - - - - AAAI2017
EAST [paper] 50.0 36.2 42.0 - - - - - - CVPR2017
SegLink [paper] 30.3 23.8 26.7 - - - - - - CVPR2017

Note:

# Framework that does end-to-end training (i.e. detection + recognition).

1For the results of TextField and CTD, the improved versions of their original paper were used, and this explains why the performance is better.

2For Mask-TextSpotter, the relatively poor performance reported in their paper was due to a bug in the input reading module (which was fixed recently). The authors were informed about this issue.

End-to-end Recognition Leaderboard
(None refers to recognition without any lexicon; Full lexicon contains all words in test set.)

Method Backbone None (%) Full (%) FPS Published at
CRAFTS [paper] ResNet50-FPN 78.7 - - ECCV2020
MANGO [paper] ResNet50-FPN 72.9 83.6 4.3 AAAI2021
Text Perceptron [paper] ResNet50-FPN 69.7 78.3 - AAAI2020
ABCNet-MS [paper] ResNet50-FPN 69.5 78.4 6.9 CVPR2020
CharNet H-88 MS [paper] ResNet50-Hourglass57 69.2 - 1.2 ICCV2019
Qin et al. [paper] ResNet50-MSF 67.8 - - ICCV2019
ASTS_Weakly [paper] ResNet101-FPN 65.3 84.2 2.5 TIP2020
Boundary [paper] ResNet50-FPN 65.0 76.1 - AAAI2020
ABCNet [paper] ResNet50-FPN 64.2 75.7 17.9 CVPR2020
CAPNet [paper] ResNet50-FPN 62.7 - - ICASSP2020
Feng et al. [paper] VGG 55.8 79.2 - IJCV2020
TextNet [paper] ResNet50-SAM 54.0 - 2.7 ACCV2018
Mask TextSpotter [paper] ResNet50-FPN 52.9 71.8 4.8 ECCV2018
TextDragon [paper] VGG16 48.8 74.8 - ICCV2019
Textboxes [paper] ResNet50-FPN 36.3 48.9 1.4 AAAI2017

Description

In order to facilitate a new text detection research, we introduce Total-Text dataset (IJDAR)(ICDAR-17 paper) (presentation slides), which is more comprehensive than the existing text datasets. The Total-Text consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Citation

If you find this dataset useful for your research, please cite

@article{CK2019,
  author    = {Chee Kheng Ch’ng and
               Chee Seng Chan and
               Chenglin Liu},
  title     = {Total-Text: Towards Orientation Robustness in Scene Text Detection},
  journal   = {International Journal on Document Analysis and Recognition (IJDAR)},
  volume    = {23},
  pages     = {31-52},
  year      = {2020},
  doi       = {10.1007/s10032-019-00334-z},
}

Feedback

Suggestions and opinions of this dataset (both positive and negative) are greatly welcome. Please contact the authors by sending email to chngcheekheng at gmail.com or cs.chan at um.edu.my.

License and Copyright

The project is open source under BSD-3 license (see the LICENSE file).

For commercial purpose usage, please contact Dr. Chee Seng Chan at cs.chan at um.edu.my

©2017-2020 Center of Image and Signal Processing, Faculty of Computer Science and Information Technology, University of Malaya.

Owner
Chee Seng Chan
Chee Seng Chan
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
Python Computer Vision from Scratch

This repository explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both f

Milaan Parmar / Милан пармар / _米兰 帕尔马 221 Dec 26, 2022
The open source extract transaction infomation by using OCR.

Transaction OCR Mã nguồn trích xuất thông tin transaction từ file scaned pdf, ở đây tôi lựa chọn tài liệu sao kê công khai của Thuy Tien. Mã nguồn có

Nguyen Xuan Hung 18 Jun 02, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
A small C++ implementation of LSTM networks, focused on OCR.

clstm CLSTM is an implementation of the LSTM recurrent neural network model in C++, using the Eigen library for numerical computations. Status and sco

Tom 794 Dec 30, 2022
Shape Detection - It's a shape detection project with OpenCV and Python.

Shape Detection It's a shape detection project with OpenCV and Python. Setup pip install opencv-python for doing AI things. pip install simpleaudio fo

1 Nov 26, 2022
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
This is the open source implementation of the ICLR2022 paper "StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis"

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image

Meta Research 840 Dec 26, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
huoyijie 1.2k Dec 29, 2022
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Li Siyao 237 Dec 29, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
Tracking the latest progress in Scene Text Detection and Recognition: Must-read papers well organized

SceneTextPapers Tracking the latest progress in Scene Text Detection and Recognition: must-read papers well organized Information about this repositor

Shangbang Long 763 Jan 01, 2023
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor

Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We

azhar shaikh 62 Oct 10, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

SimpleRPA 基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化 简介 SimpleRPA是一款python语言编写的开源RPA工具(桌面自动控制工具),用户可以通过配置yaml格式的文件,来实现桌面软件的自动化控制,简化繁杂重复的工作,比如运营人员给用户发消息,

Song Hui 7 Jun 26, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021