Progressive Image Deraining Networks: A Better and Simpler Baseline

Related tags

Deep LearningPReNet
Overview

Progressive Image Deraining Networks: A Better and Simpler Baseline

[arxiv] [pdf] [supp]

Introduction

This paper provides a better and simpler baseline deraining network by discussing network architecture, input and output, and loss functions. Specifically, by repeatedly unfolding a shallow ResNet, progressive ResNet (PRN) is proposed to take advantage of recursive computation. A recurrent layer is further introduced to exploit the dependencies of deep features across stages, forming our progressive recurrent network (PReNet). Furthermore, intra-stage recursive computation of ResNet can be adopted in PRN and PReNet to notably reduce network parameters with graceful degradation in deraining performance (PRN_r and PReNet_r). For network input and output, we take both stage-wise result and original rainy image as input to each ResNet and finally output the prediction of residual image. As for loss functions, single MSE or negative SSIM losses are sufficient to train PRN and PReNet. Experiments show that PRN and PReNet perform favorably on both synthetic and real rainy images. Considering its simplicity, efficiency and effectiveness, our models are expected to serve as a suitable baseline in future deraining research.

Prerequisites

  • Python 3.6, PyTorch >= 0.4.0
  • Requirements: opencv-python, tensorboardX
  • Platforms: Ubuntu 16.04, cuda-8.0 & cuDNN v-5.1 (higher versions also work well)
  • MATLAB for computing evaluation metrics

Datasets

PRN and PReNet are evaluated on four datasets*: Rain100H [1], Rain100L [1], Rain12 [2] and Rain1400 [3]. Please download the testing datasets from BaiduYun or OneDrive, and place the unzipped folders into ./datasets/test/.

To train the models, please download training datasets: RainTrainH [1], RainTrainL [1] and Rain12600 [3] from BaiduYun or OneDrive, and place the unzipped folders into ./datasets/train/.

*We note that:

(i) The datasets in the website of [1] seem to be modified. But the models and results in recent papers are all based on the previous version, and thus we upload the original training and testing datasets to BaiduYun and OneDrive.

(ii) For RainTrainH, we strictly exclude 546 rainy images that have the same background contents with testing images. All our models are trained on remaining 1,254 training samples.

Getting Started

1) Testing

We have placed our pre-trained models into ./logs/.

Run shell scripts to test the models:

bash test_Rain100H.sh   # test models on Rain100H
bash test_Rain100L.sh   # test models on Rain100L
bash test_Rain12.sh     # test models on Rain12
bash test_Rain1400.sh   # test models on Rain1400 
bash test_Ablation.sh   # test models in Ablation Study
bash test_real.sh       # test PReNet on real rainy images

All the results in the paper are also available at BaiduYun. You can place the downloaded results into ./results/, and directly compute all the evaluation metrics in this paper.

2) Evaluation metrics

We also provide the MATLAB scripts to compute the average PSNR and SSIM values reported in the paper.

 cd ./statistic
 run statistic_Rain100H.m
 run statistic_Rain100L.m
 run statistic_Rain12.m
 run statistic_Rain1400.m
 run statistic_Ablation.m  # compute the metrics in Ablation Study

Average PSNR/SSIM values on four datasets:

Dataset PRN PReNet PRN_r PReNet_r JORDER[1] RESCAN[4]
Rain100H 28.07/0.884 29.46/0.899 27.43/0.874 28.98/0.892 26.54/0.835 28.88/0.866
Rain100L 36.99/0.977 37.48/0.979 36.11/0.973 37.10/0.977 36.61/0.974 ---
Rain12 36.62/0.952 36.66/0.961 36.16/0.961 36.69/0.962 33.92/0.953 ---
Rain1400 31.69/0.941 32.60/0.946 31.31/0.937 32.44/0.944 --- ---

*We note that:

(i) The metrics by JORDER[1] are computed directly based on the deraining images provided by the authors.

(ii) RESCAN[4] is re-trained with their default settings: (1) RESCAN for Rain100H is trained on the full 1800 rainy images, while our models are all trained on the strict 1254 rainy images. (2) The re-trained model of RESCAN is available at here.

(iii) The deraining results by JORDER and RESCAN can be downloaded from here, and their metrics in the above table can be computed by the Matlab scripts.

3) Training

Run shell scripts to train the models:

bash train_PReNet.sh      
bash train_PRN.sh   
bash train_PReNet_r.sh    
bash train_PRN_r.sh  

You can use tensorboard --logdir ./logs/your_model_path to check the training procedures.

Model Configuration

The following tables provide the configurations of options.

Training Mode Configurations

Option Default Description
batchSize 18 Training batch size
recurrent_iter 6 Number of recursive stages
epochs 100 Number of training epochs
milestone [30,50,80] When to decay learning rate
lr 1e-3 Initial learning rate
save_freq 1 save intermediate model
use_GPU True use GPU or not
gpu_id 0 GPU id
data_path N/A path to training images
save_path N/A path to save models and status

Testing Mode Configurations

Option Default Description
use_GPU True use GPU or not
gpu_id 0 GPU id
recurrent_iter 6 Number of recursive stages
logdir N/A path to trained model
data_path N/A path to testing images
save_path N/A path to save results

References

[1] Yang W, Tan RT, Feng J, Liu J, Guo Z, Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2] Li Y, Tan RT, Guo X, Lu J, Brown MS. Rain streak removal using layer priors. In IEEE CVPR 2016.

[3] Fu X, Huang J, Zeng D, Huang Y, Ding X, Paisley J. Removing rain from single images via a deep detail network. In IEEE CVPR 2017.

[4] Li X, Wu J, Lin Z, Liu H, Zha H. Recurrent squeeze-and-excitation context aggregation net for single image deraining.In ECCV 2018.

Citation

 @inproceedings{ren2019progressive,
   title={Progressive Image Deraining Networks: A Better and Simpler Baseline},
   author={Ren, Dongwei and Zuo, Wangmeng and Hu, Qinghua and Zhu, Pengfei and Meng, Deyu},
   booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
   year={2019},
 }
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022