Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview

Overview

This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann. CVPR 2020.

Most recent 6D pose estimation frameworks first rely on a deep network to establish correspondences between 3D object keypoints and 2D image locations and then use a variant of a RANSAC-based Perspective-n-Point (PnP) algorithm. This two-stage process, however, is suboptimal: First, it is not end-to-end trainable. Second, training the deep network relies on a surrogate loss that does not directly reflect the final 6D pose estimation task.

In this work, we introduce a deep architecture that directly regresses 6D poses from correspondences. It takes as input a group of candidate correspondences for each 3D keypoint and accounts for the fact that the order of the correspondences within each group is irrelevant, while the order of the groups, that is, of the 3D keypoints, is fixed. Our architecture is generic and can thus be exploited in conjunction with existing correspondence-extraction networks so as to yield single-stage 6D pose estimation frameworks. Our experiments demonstrate that these single-stage frameworks consistently outperform their two-stage counterparts in terms of both accuracy and speed.

Figure 1: Motivation. Consider the modern 6D pose estimation algorithm of SegDrivenPose that uses a deep network to predict several 2D correspondences for each of the eight 3D corners of the pitcher's bounding box. (a) Because it minimizes the average 2D error of these correspondences, two instances of such a framework could produce correspondences that differ but have the same average accuracy, such as the green and the red ones. As evidenced by the projected green and red reference frames, applying a RANSAC-based PnP algorithm to these two sets of correspondences can yield substantially different poses. (b) Even when using only the set of green correspondences, simply changing their order causes a RANSAC-based PnP algorithm to return different solutions.

Figure 2: Overall architecture for single-stage 6D object pose estimation. After establishing 3D-to-2D correspondences by some segmentation-driven CNN for 6D pose, we use three main modules to infer the pose from these correspondence clusters directly: a local feature extraction module with shared network parameters, a feature aggregation module operating within the different clusters, and a global inference module consisting of simple fully-connected layers to estimate the final pose as a quaternion and a translation. The color in the CNN outputs indicates the direction of the 2D offset from the grid cell center to the corresponding projected 3D bounding box corner.

How to Use

This repository contains the code for the core network inferring pose from correspondences. It is straightforward to merge with other correspondence-extraction networks SegDrivenPose or PVNet to obtain an end-to-end 6D pose framework.

Citing

@inproceedings{hu2020singlestagepose,
  title={Single-Stage 6D Object Pose Estimation},
  author={Yinlin Hu and Pascal Fua and Wei Wang and Mathieu Salzmann},
  booktitle={CVPR},
  year={2020}
}
Owner
CVLAB @ EPFL
CVLAB @ EPFL
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022