An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Related tags

Deep LearningJoEm
Overview

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation

This is an official implementation of the paper "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation", accepted to ICCV2021.

For more information, please checkout the project site [website] and the paper [arXiv].

Pre-requisites

This repository uses the following libraries:

  • Python (3.6)
  • Pytorch (1.8.1)

Getting Started

Datasets

VOC

The structure of data path should be organized as follows:

/dataset/PASCALVOC/VOCdevkit/VOC2012/                         % Pascal VOC datasets root
/dataset/PASCALVOC/VOCdevkit/VOC2012/JPEGImages/              % Pascal VOC images
/dataset/PASCALVOC/VOCdevkit/VOC2012/SegmentationClass/       % Pascal VOC segmentation maps
/dataset/PASCALVOC/VOCdevkit/VOC2012/ImageSets/Segmentation/  % Pascal VOC splits

CONTEXT

The structure of data path should be organized as follows:

/dataset/context/                                 % Pascal CONTEXT dataset root
/dataset/context/59_labels.pth                    % Pascal CONTEXT segmentation maps
/dataset/context/pascal_context_train.txt         % Pascal CONTEXT splits
/dataset/context/pascal_context_val.txt           % Pascal CONTEXT splits
/dataset/PASCALVOC/VOCdevkit/VOC2012/JPEGImages/  % Pascal VOC images

Training

We use DeepLabV3+ with ResNet-101 as our visual encoder. Following ZS3Net, ResNet-101 is initialized with the pre-trained weights for ImageNet classification, where training samples of seen classes are used only. (weights here)

VOC

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3

CONTEXT

python train_context_zs3setting.py -c configs/config_context_zs3setting.json -d 0,1,2,3

Testing

VOC

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3 -r <visual encoder>.pth --test

CONTEXT

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3 -r <visual encoder>.pth --test

Acknowledgements

You might also like...
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

 Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Official implementation of the ICCV 2021 paper:
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

[ICCV 2021] Official Tensorflow Implementation for
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Comments
  • datasets

    datasets

    Thank you for your work~

    self._cat_dir = self._base_dir / ("%d_labels.pth" % (self.n_categories))

    Could you tell me how to generate the "59_labels.pth" file of the context dataset?

    opened by Wangyiqi 1
  • train_aug.txt

    train_aug.txt

    Dear Authors,

    When I run your code, there is an error:

    FileNotFoundError: [Errno 2] No such file or directory: 'dataset/PASCALVOC/VOCdevkit/VOC2012/ImageSets/Segmentation/train_aug.txt'

    Could you tell me how to get train_aug.txt?

    opened by AmingWu 1
  • dataset split

    dataset split

    After introducing the SBD (Semantic Boundary Dataset), what kind of split (train_split and test_split include how many images ) is adopted by this paper?

    opened by zaiquanyang 0
Owner
CV Lab @ Yonsei University
CV Lab @ Yonsei University
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Nicholas Lee 3 Jan 09, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022