[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Overview

Reference-based Video Super-Resolution (RefVSR)
Official PyTorch Implementation of the CVPR 2022 Paper
Project | arXiv | RealMCVSR Dataset
Hugging Face Spaces License CC BY-NC
PWC

This repo contains training and evaluation code for the following paper:

Reference-based Video Super-Resolution Using Multi-Camera Video Triplets
Junyong Lee, Myeonghee Lee, Sunghyun Cho, and Seungyong Lee
POSTECH
IEEE Computer Vision and Pattern Recognition (CVPR) 2022


Getting Started

Prerequisites

Tested environment

Ubuntu Python PyTorch CUDA

1. Environment setup

$ git clone https://github.com/codeslake/RefVSR.git
$ cd RefVSR

$ conda create -y name RefVSR python 3.8 && conda activate RefVSR

# Install pytorch
$ conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

# Install requirements
$ ./install/install_cudnn113.sh

It is recommended to install PyTorch >= 1.10.0 with CUDA11.3 for running small models using Pytorch AMP, because PyTorch < 1.10.0 is known to have a problem in running amp with torch.nn.functional.grid_sample() needed for inter-frame alignment.

For the other models, PyTorch 1.8.0 is verified. To install requirements with PyTorch 1.8.0, run ./install/install_cudnn102.sh for CUDA10.2 or ./install/install_cudnn111.sh for CUDA11.1

2. Dataset

Download and unzip the proposed RealMCVSR dataset under [DATA_OFFSET]:

[DATA_OFFSET]
    └── RealMCVSR
        ├── train                       # a training set
        │   ├── HR                      # videos in original resolution 
        │   │   ├── T                   # telephoto videos
        │   │   │   ├── 0002            # a video clip 
        │   │   │   │   ├── 0000.png    # a video frame
        │   │   │   │   └── ...         
        │   │   │   └── ...            
        │   │   ├── UW                  # ultra-wide-angle videos
        │   │   └── W                   # wide-angle videos
        │   ├── LRx2                    # 2x downsampled videos
        │   └── LRx4                    # 4x downsampled videos
        ├── test                        # a testing set
        └── valid                       # a validation set

[DATA_OFFSET] can be modified with --data_offset option in the evaluation script.

3. Pre-trained models

Download pretrained weights (Google Drive | Dropbox) under ./ckpt/:

RefVSR
├── ...
├── ./ckpt
│   ├── edvr.pytorch                    # weights of EDVR modules used for training Ours-IR
│   ├── SPyNet.pytorch                  # weights of SpyNet used for inter-frame alignment
│   ├── RefVSR_small_L1.pytorch         # weights of Ours-small-L1
│   ├── RefVSR_small_MFID.pytorch       # weights of Ours-small
│   ├── RefVSR_small_MFID_8K.pytorch    # weights of Ours-small-8K
│   ├── RefVSR_L1.pytorch               # weights of Ours-L1
│   ├── RefVSR_MFID.pytorch             # weights of Ours
│   ├── RefVSR_MFID_8K.pytorch.pytorch  # weights of Ours-8K
│   ├── RefVSR_IR_MFID.pytorch          # weights of Ours-IR
│   └── RefVSR_IR_L1.pytorch            # weights of Ours-IR-L1
└── ...

For the testing and training of your own model, it is recommended to go through wiki pages for
logging and details of testing and training scripts before running the scripts.

Testing models of CVPR 2022

Evaluation script

CUDA_VISIBLE_DEVICES=0 python -B run.py \
    --mode _RefVSR_MFID_8K \                       # name of the model to evaluate
    --config config_RefVSR_MFID_8K \               # name of the configuration file in ./configs
    --data RealMCVSR \                             # name of the dataset
    --ckpt_abs_name ckpt/RefVSR_MFID_8K.pytorch \  # absolute path for the checkpoint
    --data_offset /data1/junyonglee \              # offset path for the dataset (e.g., [DATA_OFFSET]/RealMCVSR)
    --output_offset ./result                       # offset path for the outputs

Real-world 4x video super-resolution (HD to 8K resolution)

# Evaluating the model 'Ours' (Fig. 8 in the main paper).
$ ./scripts_eval/eval_RefVSR_MFID_8K.sh

# Evaluating the model 'Ours-small'.
$ ./scripts_eval/eval_amp_RefVSR_small_MFID_8K.sh

For the model Ours, we use Nvidia Quadro 8000 (48GB) in practice.

For the model Ours-small,

  • We use Nvidia GeForce RTX 3090 (24GB) in practice.
  • It is the model Ours-small in Table 2 further trained with the adaptation stage.
  • The model requires PyTorch >= 1.10.0 with CUDA 11.3 for using PyTorch AMP.

Quantitative evaluation (models trained with the pre-training stage)

## Table 2 in the main paper
# Ours
$ ./scripts_eval/eval_RefVSR_MFID.sh

# Ours-l1
$ ./scripts_eval/eval_RefVSR_L1.sh

# Ours-small
$ ./scripts_eval/eval_amp_RefVSR_small_MFID.sh

# Ours-small-l1
$ ./scripts_eval/eval_amp_RefVSR_small_L1.sh

# Ours-IR
$ ./scripts_eval/eval_RefVSR_IR_MFID.sh

# Ours-IR-l1
$ ./scripts_eval/eval_RefVSR_IR_L1.sh

For all models, we use Nvidia GeForce RTX 3090 (24GB) in practice.

To obtain quantitative results measured with the varying FoV ranges as shown in Table 3 of the main paper, modify the script and specify --eval_mode FOV.

Training models with the proposed two-stage training strategy

The pre-training stage (Sec. 4.1)

# To train the model 'Ours':
$ ./scripts_train/train_RefVSR_MFID.sh

# To train the model 'Ours-small':
$ ./scripts_train/train_amp_RefVSR_small_MFID.sh

For both models, we use Nvidia GeForce RTX 3090 (24GB) in practice.

Be sure to modify the script file and set proper GPU devices, number of GPUs, and batch size by modifying CUDA_VISIBLE_DEVICES, --nproc_per_node and -b options, respectively.

  • We use the total batch size of 4, the multiplication of numbers in options --nproc_per_node and -b.

The adaptation stage (Sec. 4.2)

  1. Set the path of the checkpoint of a model trained with the pre-training stage.
    For the model Ours-small, for example,

    $ vim ./scripts_train/train_amp_RefVSR_small_MFID_8K.sh
    #!/bin/bash
    
    py3clean ./
    CUDA_VISIBLE_DEVICES=0,1 ...
        ...
        -ra [LOG_OFFSET]/RefVSR_CVPR2022/amp_RefVSR_small_MFID/checkpoint/train/epoch/ckpt/amp_RefVSR_small_MFID_00xxx.pytorch
        ...
    

    Checkpoint path is [LOG_OFFSET]/RefVSR_CVPR2022/[mode]/checkpoint/train/epoch/[mode]_00xxx.pytorch.

    • PSNR is recorded in [LOG_OFFSET]/RefVSR_CVPR2022/[mode]/checkpoint/train/epoch/checkpoint.txt.
    • [LOG_OFFSET] can be modified with config.log_offset in ./configs/config.py.
    • [mode] is the name of the model assigned with --mode in the script used for the pre-training stage.
  2. Start the adaptation stage.

    # Training the model 'Ours'.
    $ ./scripts_train/train_RefVSR_MFID_8K.sh
    
    # Training the model 'Ours-small'.
    $ ./scripts_train/train_amp_RefVSR_small_MFID_8K.sh

    For the model Ours, we use Nvidia Quadro 8000 (48GB) in practice.

    For the model Ours-small, we use Nvidia GeForce RTX 3090 (24GB) in practice.

    Be sure to modify the script file to set proper GPU devices, number of GPUs, and batch size by modifying CUDA_VISIBLE_DEVICES, --nproc_per_node and -b options, respectively.

    • We use the total batch size of 2, the multiplication of numbers in options --nproc_per_node and -b.

Training models with L1 loss

# To train the model 'Ours-l1':
$ ./scripts_train/train_RefVSR_L1.sh

# To train the model 'Ours-small-l1':
$ ./scripts_train/train_amp_RefVSR_small_L1.sh

# To train the model 'Ours-IR-l1':
$ ./scripts_train/train_amp_RefVSR_small_L1.sh

For all models, we use Nvidia GeForce RTX 3090 (24GB) in practice.

Be sure to modify the script file and set proper GPU devices, number of GPUs, and batch size by modifying CUDA_VISIBLE_DEVICES, --nproc_per_node and -b options, respectively.

  • We use the total batch size of 8, the multiplication of numbers in options --nproc_per_node and -b.

Wiki

Contact

Open an issue for any inquiries. You may also have contact with [email protected]

License

License CC BY-NC

This software is being made available under the terms in the LICENSE file. Any exemptions to these terms require a license from the Pohang University of Science and Technology.

Acknowledgment

We thank the authors of BasicVSR and DCSR for sharing their code.

BibTeX

@InProceedings{Lee2022RefVSR,
    author    = {Junyong Lee and Myeonghee Lee and Sunghyun Cho and Seungyong Lee},
    title     = {Reference-based Video Super-Resolution Using Multi-Camera Video Triplets},
    booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2022}
}
Owner
Junyong Lee
Ph.D. candidate at POSTECH
Junyong Lee
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022