[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

Overview

template-pose

Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper (accepted to CVPR 2022)

Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann and Vincent Lepetit

Check out our paper and webpage for details!

figures/method.png

If our project is helpful for your research, please consider citing :

@inproceedings{nguyen2022template,
    title={Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions},
    author={Nguyen, Van Nguyen and Hu, Yinlin and Xiao, Yang and Salzmann, Mathieu and Lepetit, Vincent},
    booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}}

Table of Content

Methodology 🧑‍🎓

We introduce template-pose, which estimates 3D pose of new objects (can be very different from the training ones, i.e LINEMOD dataset) with only their 3D models. Our method requires neither a training phase on these objects nor images depicting them.

Two settings are considered in this work:

Dataset Predict ID object In-plane rotation
(Occlusion-)LINEMOD Yes No
T-LESS No Yes

Installation 👨‍🔧

We recommend creating a new Anaconda environment to use template-pose. Use the following commands to setup a new environment:

conda env create -f environment.yml
conda activate template

Optional: Installation of BlenderProc is required to render synthetic images. It can be ignored if you use our provided template. More details can be found in Datasets.

Datasets 😺 🔌

Before downloading the datasets, you may change this line to define the $ROOT folder (to store data and results).

There are two options:

  1. To download our pre-processed datasets (15GB) + SUN397 dataset (37GB)
./data/download_preprocessed_data.sh

Optional: You can download with following gdrive links and unzip them manually. We recommend keeping $DATA folder structure as detailed in ./data/README to keep pipeline simple:

  1. To download the original datasets and process them from scratch (process GT poses, render templates, compute nearest neighbors). All the main steps are detailed in ./data/README.
./data/download_and_process_from_scratch.sh

For any training with backbone ResNet50, we initialise with pretrained features of MOCOv2 which can be downloaded with the following command:

python -m lib.download_weight --model_name MoCov2

T-LESS 🔌

1. To launch a training on T-LESS:

python train_tless.py --config_path ./config_run/TLESS.json

2. To reproduce the results on T-LESS:

To download pretrained weights (by default, they are saved at $ROOT/pretrained/TLESS.pth):

python -m lib.download_weight --model_name TLESS

Optional: You can download manually with this link

To evaluate model with the pretrained weight:

python test_tless.py --config_path ./config_run/TLESS.json --checkpoint $ROOT/pretrained/TLESS.pth

LINEMOD and Occlusion-LINEMOD 😺

1. To launch a training on LINEMOD:

python train_linemod.py --config_path config_run/LM_$backbone_$split_name.json

For example, with “base" backbone and split #1:

python train_linemod.py --config_path config_run/LM_baseNetwork_split1.json

2. To reproduce the results on LINEMOD:

To download pretrained weights (by default, they are saved at $ROOT/pretrained):

python -m lib.download_weight --model_name LM_$backbone_$split_name

Optional: You can download manually with this link

To evaluate model with a checkpoint_path:

python test_linemod.py --config_path config_run/LM_$backbone_$split_name.json --checkpoint checkpoint_path

For example, with “base" backbone and split #1:

python -m lib.download_weight --model_name LM_baseNetwork_split1
python test_linemod.py --config_path config_run/LM_baseNetwork_split1.json --checkpoint $ROOT/pretrained/LM_baseNetwork_split1.pth

Acknowledgement

The code is adapted from PoseContrast, DTI-Clustering, CosyPose and BOP Toolkit. Many thanks to them!

The authors thank Martin Sundermeyer, Paul Wohlhart and Shreyas Hampali for their fast reply, feedback!

Contact

If you have any question, feel free to create an issue or contact the first author at [email protected]

Owner
Van Nguyen Nguyen
PhD student at Imagine-ENPC, France
Van Nguyen Nguyen
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022