Spectralformer: Rethinking hyperspectral image classification with transformers

Overview

Spectralformer: Rethinking hyperspectral image classification with transformers

Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot


The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

alt text

Citation

Please kindly cite the papers if this code is useful and helpful for your research.

Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Spectralformer: Rethinking hyperspectral image classification with transformers, IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2022, DOT: 10.1109/TGRS.2021.3130716.

@article{hong2021spectralformer,
  title={Spectralformer: Rethinking hyperspectral image classification with transformers},
  author={Hong, Danfeng and Han, Zhu and Yao, Jing and Gao, Lianru and Zhang, Bing and Plaza, Antonio and Chanussot, Jocelyn},
  journal={IEEE Trans. Geosci. Remote Sens.},
  note = {DOI: 10.1109/TGRS.2021.3130716},
  year={2022}  
}

System-specific notes

The data were generated by Matlab R2016a or higher versions, and the codes of networks were tested using PyTorch 1.6 version (CUDA 10.1) in Python 3.7 on Ubuntu system.

How to use it?

This toolbox consists of two proposed modules, i.e., group-wise spectral embedding (GSE: by setting band_patches larger than 1) and cross-layer adaptive fusion (CAF: by setting mode to CAF), that can be plug-and-played into both pixel-wise and patch-wise hyperspectral image classification. For more details, please refer to the paper.

Here an example experiment is given by using Indian Pines hyperspectral data. Directly run demo.py functions with different network parameter settings to produce the results. Please note that due to the randomness of the parameter initialization, the experimental results might have slightly different from those reported in the paper.

โ— You may need to manually download IndianPine.mat to your local in the folder under path Codes_SpectralFormer/data/, due to their too large file size, from the following links of google drive or baiduyun:

Google drive: https://drive.google.com/drive/folders/1nRphkwDZ74p-Al_O_X3feR24aRyEaJDY?usp=sharing

Baiduyun: https://pan.baidu.com/s/1rY9hj7Ku1Un4PPOjEFpEfQ (access code: 6dme)

If you want to run the code in your own data, you can accordingly change the input (e.g., data, labels) and tune the parameters.

If you encounter the bugs while using this code, please do not hesitate to contact us.

Licensing

Copyright (C) 2021 Danfeng Hong

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

Contact Information:

Danfeng Hong: [email protected]
Danfeng Hong is with the Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, 100094 Beijing, China.

If emergency, you can also add my QQ: 345088114.

Owner
Danfeng Hong
Research Scientist, DLR, Germany / Adjunct Scientist, GiPSA-Lab, French / Machine and Deep Learning in Earth Vision
Danfeng Hong
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
๐ŸŽ๏ธ Accelerate training and inference of ๐Ÿค— Transformers with easy to use hardware optimization tools

Hugging Face Optimum ๐Ÿค— Optimum is an extension of ๐Ÿค— Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
A toy compiler that can convert Python scripts to pickle bytecode ๐Ÿฅ’

Pickora ๐Ÿฐ A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

๊Œ—แ–˜๊’’๊€ค๊“„๊’’๊€ค๊ˆค๊Ÿ 68 Jan 04, 2023
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas ล imkus 1 Apr 08, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers ๐Ÿ”ฅ

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformerโ€™s at

Soohwan Kim 32 Nov 07, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022