[SDM 2022] Towards Similarity-Aware Time-Series Classification

Related tags

Deep LearningSimTSC
Overview

SimTSC

This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Series Classification (SimTSC), a conceptually simple and general framework that models similarity information with graph neural networks (GNNs). We formulate time-series classification as a node classification problem in graphs, where the nodes correspond to time-series, and the links correspond to pair-wise similarities. overview

Installation

pip3 install -r requirements.txt

Datasets

We provide an example dataset Coffee in this repo. You may download the full UCR datasets here. Multivariate datasets are provided in this link.

Quick Start

We use Coffee as an example to show how to run the code. You may easily try other datasets with arguments --dataset. We will show how to get the results for DTW+1NN, ResNet, and SimTSC.

First, prepare the dataset with

python3 create_dataset.py

Then install the python wrapper of UCR DTW library with

git clone https://github.com/daochenzha/pydtw.git
cd pydtw
pip3 install -e .
cd ..

Then compute the dtw matrix for Coffee with

python3 create_dtw.py
  1. For DTW+1NN:
python3 train_knn.py
  1. For ResNet:
python3 train_resnet.py
  1. For SimTSC:
python3 train_simtsc.py

All the logs will be saved in logs/

Multivariate Datasets Quick Start

  1. Download the datasets and pre-computed DTW with this link.

  2. Unzip the file and put it into datasets/ folder

  3. Prepare the datasets with

python3 create_dataset.py --dataset CharacterTrajectories
  1. For DTW+1NN:
python3 train_knn.py --dataset CharacterTrajectories
  1. For ResNet:
python3 train_resnet.py --dataset CharacterTrajectories
  1. For SimTSC:
python3 train_simtsc.py --dataset CharacterTrajectories

Descriptions of the Files

  1. create_dataset.py is a script to pre-process dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  • --shot: how many training labels are given in each class
  1. create_dtw.py is a script to calculate pair-wise DTW distances of a dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  1. train_knn.py is a script to do classfication DTW+1NN of a dataset. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  1. train_resnet.py is a script to do classfication of a dataset with ResNet. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  1. train_simtsc.py is a script to do classfication of a dataset with SimTSC. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  • --K: number of neighbors per node in the constructed graph
  • --alpha: the scaling factor of the weights of the constructed graph
Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023