Python port of Google's libphonenumber

Overview

phonenumbers Python Library

Coverage Status

This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase, with no 2to3 conversion needed).

Original Java code is Copyright (C) 2009-2015 The Libphonenumber Authors.

Release HISTORY, derived from upstream release notes.

Installation

Install using pip with:

pip install phonenumbers

Example Usage

The main object that the library deals with is a PhoneNumber object. You can create this from a string representing a phone number using the parse function, but you also need to specify the country that the phone number is being dialled from (unless the number is in E.164 format, which is globally unique).

>>> import phonenumbers
>>> x = phonenumbers.parse("+442083661177", None)
>>> print(x)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> type(x)
<class 'phonenumbers.phonenumber.PhoneNumber'>
>>> y = phonenumbers.parse("020 8366 1177", "GB")
>>> print(y)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> x == y
True
>>> z = phonenumbers.parse("00 1 650 253 2222", "GB")  # as dialled from GB, not a GB number
>>> print(z)
Country Code: 1 National Number: 6502532222 Leading Zero(s): False

The PhoneNumber object that parse produces typically still needs to be validated, to check whether it's a possible number (e.g. it has the right number of digits) or a valid number (e.g. it's in an assigned exchange).

>>> z = phonenumbers.parse("+120012301", None)
>>> print(z)
Country Code: 1 National Number: 20012301 Leading Zero: False
>>> phonenumbers.is_possible_number(z)  # too few digits for USA
False
>>> phonenumbers.is_valid_number(z)
False
>>> z = phonenumbers.parse("+12001230101", None)
>>> print(z)
Country Code: 1 National Number: 2001230101 Leading Zero: False
>>> phonenumbers.is_possible_number(z)
True
>>> phonenumbers.is_valid_number(z)  # NPA 200 not used
False

The parse function will also fail completely (with a NumberParseException) on inputs that cannot be uniquely parsed, or that can't possibly be phone numbers.

>>> z = phonenumbers.parse("02081234567", None)  # no region, no + => unparseable
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2350, in parse
    "Missing or invalid default region.")
phonenumbers.phonenumberutil.NumberParseException: (0) Missing or invalid default region.
>>> z = phonenumbers.parse("gibberish", None)
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2344, in parse
    "The string supplied did not seem to be a phone number.")
phonenumbers.phonenumberutil.NumberParseException: (1) The string supplied did not seem to be a phone number.

Once you've got a phone number, a common task is to format it in a standardized format. There are a few formats available (under PhoneNumberFormat), and the format_number function does the formatting.

>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.NATIONAL)
'020 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.INTERNATIONAL)
'+44 20 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.E164)
'+442083661177'

If your application has a UI that allows the user to type in a phone number, it's nice to get the formatting applied as the user types. The AsYouTypeFormatter object allows this.

>>> formatter = phonenumbers.AsYouTypeFormatter("US")
>>> formatter.input_digit("6")
'6'
>>> formatter.input_digit("5")
'65'
>>> formatter.input_digit("0")
'650'
>>> formatter.input_digit("2")
'650 2'
>>> formatter.input_digit("5")
'650 25'
>>> formatter.input_digit("3")
'650 253'
>>> formatter.input_digit("2")
'650-2532'
>>> formatter.input_digit("2")
'(650) 253-22'
>>> formatter.input_digit("2")
'(650) 253-222'
>>> formatter.input_digit("2")
'(650) 253-2222'

Sometimes, you've got a larger block of text that may or may not have some phone numbers inside it. For this, the PhoneNumberMatcher object provides the relevant functionality; you can iterate over it to retrieve a sequence of PhoneNumberMatch objects. Each of these match objects holds a PhoneNumber object together with information about where the match occurred in the original string.

>>> text = "Call me at 510-748-8230 if it's before 9:30, or on 703-4800500 after 10am."
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(match)
...
PhoneNumberMatch [11,23) 510-748-8230
PhoneNumberMatch [51,62) 703-4800500
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.E164))
...
+15107488230
+17034800500

You might want to get some information about the location that corresponds to a phone number. The geocoder.area_description_for_number does this, when possible.

>>> from phonenumbers import geocoder
>>> ch_number = phonenumbers.parse("0431234567", "CH")
>>> geocoder.description_for_number(ch_number, "de")
'Zürich'
>>> geocoder.description_for_number(ch_number, "en")
'Zurich'
>>> geocoder.description_for_number(ch_number, "fr")
'Zurich'
>>> geocoder.description_for_number(ch_number, "it")
'Zurigo'

For mobile numbers in some countries, you can also find out information about which carrier originally owned a phone number.

>>> from phonenumbers import carrier
>>> ro_number = phonenumbers.parse("+40721234567", "RO")
>>> carrier.name_for_number(ro_number, "en")
'Vodafone'

You might also be able to retrieve a list of time zone names that the number potentially belongs to.

>>> from phonenumbers import timezone
>>> gb_number = phonenumbers.parse("+447986123456", "GB")
>>> timezone.time_zones_for_number(gb_number)
('Atlantic/Reykjavik', 'Europe/London')

For more information about the other functionality available from the library, look in the unit tests or in the original libphonenumber project.

Memory Usage

The library includes a lot of metadata, potentially giving a significant memory overhead. There are two mechanisms for dealing with this.

  • The normal metadata for the core functionality of the library is loaded on-demand, on a region-by-region basis (i.e. the metadata for a region is only loaded on the first time it is needed).
  • Metadata for extended functionality is held in separate packages, which therefore need to be explicitly loaded separately. This affects:
    • The geocoding metadata, which is held in phonenumbers.geocoder and used by the geocoding functions (geocoder.description_for_number, geocoder.description_for_valid_number or geocoder.country_name_for_number).
    • The carrier metadata, which is held in phonenumbers.carrier and used by the mapping functions (carrier.name_for_number or carrier.name_for_valid_number).
    • The timezone metadata, which is held in phonenumbers.timezone and used by the timezone functions (time_zones_for_number or time_zones_for_geographical_number).

The phonenumberslite version of the library does not include the geocoder, carrier and timezone packages, which can be useful if you have problems installing the main phonenumbers library due to space/memory limitations.

If you need to ensure that the metadata memory use is accounted for at start of day (i.e. that a subsequent on-demand load of metadata will not cause a pause or memory exhaustion):

  • Force-load the normal metadata by calling phonenumbers.PhoneMetadata.load_all().
  • Force-load the extended metadata by importing the appropriate packages (phonenumbers.geocoder, phonenumbers.carrier, phonenumbers.timezone).

The phonenumberslite version of the package does not include the geocoding, carrier and timezone metadata, which can be useful if you have problems installing the main phonenumbers package due to space/memory limitations.

Project Layout

  • The python/ directory holds the Python code.
  • The resources/ directory is a copy of the resources/ directory from libphonenumber. This is not needed to run the Python code, but is needed when upstream changes to the master metadata need to be incorporated.
  • The tools/ directory holds the tools that are used to process upstream changes to the master metadata.
Owner
David Drysdale
David Drysdale
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022