Python port of Google's libphonenumber

Overview

phonenumbers Python Library

Coverage Status

This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase, with no 2to3 conversion needed).

Original Java code is Copyright (C) 2009-2015 The Libphonenumber Authors.

Release HISTORY, derived from upstream release notes.

Installation

Install using pip with:

pip install phonenumbers

Example Usage

The main object that the library deals with is a PhoneNumber object. You can create this from a string representing a phone number using the parse function, but you also need to specify the country that the phone number is being dialled from (unless the number is in E.164 format, which is globally unique).

>>> import phonenumbers
>>> x = phonenumbers.parse("+442083661177", None)
>>> print(x)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> type(x)
<class 'phonenumbers.phonenumber.PhoneNumber'>
>>> y = phonenumbers.parse("020 8366 1177", "GB")
>>> print(y)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> x == y
True
>>> z = phonenumbers.parse("00 1 650 253 2222", "GB")  # as dialled from GB, not a GB number
>>> print(z)
Country Code: 1 National Number: 6502532222 Leading Zero(s): False

The PhoneNumber object that parse produces typically still needs to be validated, to check whether it's a possible number (e.g. it has the right number of digits) or a valid number (e.g. it's in an assigned exchange).

>>> z = phonenumbers.parse("+120012301", None)
>>> print(z)
Country Code: 1 National Number: 20012301 Leading Zero: False
>>> phonenumbers.is_possible_number(z)  # too few digits for USA
False
>>> phonenumbers.is_valid_number(z)
False
>>> z = phonenumbers.parse("+12001230101", None)
>>> print(z)
Country Code: 1 National Number: 2001230101 Leading Zero: False
>>> phonenumbers.is_possible_number(z)
True
>>> phonenumbers.is_valid_number(z)  # NPA 200 not used
False

The parse function will also fail completely (with a NumberParseException) on inputs that cannot be uniquely parsed, or that can't possibly be phone numbers.

>>> z = phonenumbers.parse("02081234567", None)  # no region, no + => unparseable
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2350, in parse
    "Missing or invalid default region.")
phonenumbers.phonenumberutil.NumberParseException: (0) Missing or invalid default region.
>>> z = phonenumbers.parse("gibberish", None)
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2344, in parse
    "The string supplied did not seem to be a phone number.")
phonenumbers.phonenumberutil.NumberParseException: (1) The string supplied did not seem to be a phone number.

Once you've got a phone number, a common task is to format it in a standardized format. There are a few formats available (under PhoneNumberFormat), and the format_number function does the formatting.

>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.NATIONAL)
'020 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.INTERNATIONAL)
'+44 20 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.E164)
'+442083661177'

If your application has a UI that allows the user to type in a phone number, it's nice to get the formatting applied as the user types. The AsYouTypeFormatter object allows this.

>>> formatter = phonenumbers.AsYouTypeFormatter("US")
>>> formatter.input_digit("6")
'6'
>>> formatter.input_digit("5")
'65'
>>> formatter.input_digit("0")
'650'
>>> formatter.input_digit("2")
'650 2'
>>> formatter.input_digit("5")
'650 25'
>>> formatter.input_digit("3")
'650 253'
>>> formatter.input_digit("2")
'650-2532'
>>> formatter.input_digit("2")
'(650) 253-22'
>>> formatter.input_digit("2")
'(650) 253-222'
>>> formatter.input_digit("2")
'(650) 253-2222'

Sometimes, you've got a larger block of text that may or may not have some phone numbers inside it. For this, the PhoneNumberMatcher object provides the relevant functionality; you can iterate over it to retrieve a sequence of PhoneNumberMatch objects. Each of these match objects holds a PhoneNumber object together with information about where the match occurred in the original string.

>>> text = "Call me at 510-748-8230 if it's before 9:30, or on 703-4800500 after 10am."
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(match)
...
PhoneNumberMatch [11,23) 510-748-8230
PhoneNumberMatch [51,62) 703-4800500
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.E164))
...
+15107488230
+17034800500

You might want to get some information about the location that corresponds to a phone number. The geocoder.area_description_for_number does this, when possible.

>>> from phonenumbers import geocoder
>>> ch_number = phonenumbers.parse("0431234567", "CH")
>>> geocoder.description_for_number(ch_number, "de")
'Zürich'
>>> geocoder.description_for_number(ch_number, "en")
'Zurich'
>>> geocoder.description_for_number(ch_number, "fr")
'Zurich'
>>> geocoder.description_for_number(ch_number, "it")
'Zurigo'

For mobile numbers in some countries, you can also find out information about which carrier originally owned a phone number.

>>> from phonenumbers import carrier
>>> ro_number = phonenumbers.parse("+40721234567", "RO")
>>> carrier.name_for_number(ro_number, "en")
'Vodafone'

You might also be able to retrieve a list of time zone names that the number potentially belongs to.

>>> from phonenumbers import timezone
>>> gb_number = phonenumbers.parse("+447986123456", "GB")
>>> timezone.time_zones_for_number(gb_number)
('Atlantic/Reykjavik', 'Europe/London')

For more information about the other functionality available from the library, look in the unit tests or in the original libphonenumber project.

Memory Usage

The library includes a lot of metadata, potentially giving a significant memory overhead. There are two mechanisms for dealing with this.

  • The normal metadata for the core functionality of the library is loaded on-demand, on a region-by-region basis (i.e. the metadata for a region is only loaded on the first time it is needed).
  • Metadata for extended functionality is held in separate packages, which therefore need to be explicitly loaded separately. This affects:
    • The geocoding metadata, which is held in phonenumbers.geocoder and used by the geocoding functions (geocoder.description_for_number, geocoder.description_for_valid_number or geocoder.country_name_for_number).
    • The carrier metadata, which is held in phonenumbers.carrier and used by the mapping functions (carrier.name_for_number or carrier.name_for_valid_number).
    • The timezone metadata, which is held in phonenumbers.timezone and used by the timezone functions (time_zones_for_number or time_zones_for_geographical_number).

The phonenumberslite version of the library does not include the geocoder, carrier and timezone packages, which can be useful if you have problems installing the main phonenumbers library due to space/memory limitations.

If you need to ensure that the metadata memory use is accounted for at start of day (i.e. that a subsequent on-demand load of metadata will not cause a pause or memory exhaustion):

  • Force-load the normal metadata by calling phonenumbers.PhoneMetadata.load_all().
  • Force-load the extended metadata by importing the appropriate packages (phonenumbers.geocoder, phonenumbers.carrier, phonenumbers.timezone).

The phonenumberslite version of the package does not include the geocoding, carrier and timezone metadata, which can be useful if you have problems installing the main phonenumbers package due to space/memory limitations.

Project Layout

  • The python/ directory holds the Python code.
  • The resources/ directory is a copy of the resources/ directory from libphonenumber. This is not needed to run the Python code, but is needed when upstream changes to the master metadata need to be incorporated.
  • The tools/ directory holds the tools that are used to process upstream changes to the master metadata.
Owner
David Drysdale
David Drysdale
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

NLP Boot Camp (Jan) Synopsis Full Name: Prameya Mohanty Name of your School: Delhi Public School, Rourkela Class: VIII Title of the Project: iTransect

TheCodingHub 1 Feb 01, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023