UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

Related tags

Deep Learningunimoco
Overview

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

This is the official PyTorch implementation for UniMoCo paper:

@article{dai2021unimoco,
  author  = {Zhigang Dai and Bolun Cai and Yugeng Lin and Junying Chen},
  title   = {UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning},
  journal = {arXiv preprint arXiv:2103.10773},
  year    = {2021},
}

In UniMoCo, we generalize MoCo to a unified contrastive learning framework, which supports unsupervised, semi-supervised and full-supervised visual representation learning. Based on MoCo, we maintain a label queue to store supervised labels. With the label queue, we can construct the multi-hot target on-the-fly, which represents postives and negatives of the given query. Besides, we propose a unified contrastive loss to deal with arbitrary number of positives and negatives. There is a comparison between MoCo and UniMoCo.

ImageNet Pre-training

Data Preparation

Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

Pre-training

To perform supervised contrastive learning of ResNet-50 model on ImageNet with 8 gpus for 800 epochs, run:

python main_unimoco.py \
  -a resnet50 \
  --lr 0.03 \
  --batch-size 256 \
  --epochs 800 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp \
  --moco-t 0.2 \
  --aug-plus \
  --cos \
  [your imagenet-folder with train and val folders]

By default, the script performs full-supervised contrasitve learning.

Set --supervised-list to perform semi-supervised contrastive learning with different label ratios. For exmaple, 60% labels: --supervised-list ./label_info/60percent.txt.

This script uses all the default hyper-parameters as described in the MoCo v2.

Results

ImageNet Linear classification and COCO detection 1x schedule (R50-C4) results:

model ratios top-1 acc. top-5 acc. COCO AP
UniMoCo 0% 71.1 90.1 39.0
UniMoCo 10% 72.0 90.3 39.3
UniMoCo 30% 75.1 92.5 39.6
UniMoCo 60% 76.2 93.0 39.8
UniMoCo 100% 76.4 93.1 39.6

Check more details about linear classification and detection fine-tuning on MoCo.

Models are coming soon.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
dddzg
MSc student at SCUT
dddzg
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023