Deep Distributed Control of Port-Hamiltonian Systems

Overview

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH)

This repository is associated to the paper [1] and it contains:

  1. The full paper manuscript.
  2. The code to reproduce numerical experiments.

Summary

By embracing the compositional properties of port-Hamiltonian (pH) systems, we characterize deep Hamiltonian control policies with built-in closed-loop stability guarantees — irrespective of the interconnection topology and the chosen neural network parameters. Furthermore, our setup enables leveraging recent results on well-behaved neural ODEs to prevent the phenomenon of vanishing gradients by design [2]. The numerical experiments described in the report and available in this repository corroborate the dependability of the proposed DeepDisCoPH architecture, while matching the performance of general neural network policies.

Report

The report as well as the corresponding Appendices can be found in the docs folder.

Installation of DeepDisCoPH

The following lines indicates how to install the Deep Distributed Control for Port-Hamiltonian Systems (DeepDisCoPH) package.

git clone https://github.com/DecodEPFL/DeepDisCoPH.git

cd DeepDisCoPH

python setup.py install

Basic usage

To train distributed controllers for the 12 robots in the xy-plane:

./run.py --model [MODEL]

where available values for MODEL are distributed_HDNN, distributed_HDNN_TI and distributed_MLP.

To plot the norms of the backward sensitivity matrices (BSMs) when training a distributed H-DNN as the previous example, run:

./bsm.py --layer [LAYER]

where available values for LAYER are 1,2,...,100. If LAYER=-1, then it is set to N. The LAYER parameter indicates the layer number at which we consider the loss function is evaluated.

Examples: formation control with collision avoidance

The following gifs show the trajectories of the robots before and after the training of a distributed H-DNN controller. The goal is to reach the target positions within T = 5 seconds while avoiding collisions.

robot_trajectories_before_training robot_trajectories_after_training_a_distributed_HDNN_controller

Training performed for t in [0,5]. Trajectories shown for t in [0,6], highlighting that robots stay close to the desired position when the time horizon is extended (grey background).

Early stopping of the training

We verify that DeepDisCoPH controllers ensure closed-loop stability by design even during exploration. We train the DeepDisCoPH controller for 25%, 50% and 75% of the total number of iterations and report the results in the following gifs.

robot_trajectories_25_training robot_trajectories_50_training robot_trajectories_75_training

Training performed for t in [0,5]. Trajectories shown for t in [0,15]. The extended horizon, i.e. when t in [5,15], is shown with grey background. Partially trained distributed controllers exhibit suboptimal behavior, but never compromise closed-loop stability.

References

[1] Luca Furieri, Clara L. Galimberti, Muhammad Zakwan and Giancarlo Ferrrari Trecate. "Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach", under review.

[2] Clara L. Galimberti, Luca Furieri, Liang Xu and Giancarlo Ferrrari Trecate. "Hamiltonian Deep Neural Networks Guaranteeing Non-vanishing Gradients by Design," arXiv:2105.13205, 2021.

Owner
Dependable Control and Decision group - EPFL
Dependable Control and Decision group - EPFL
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022