Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Overview

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020

This repository provides Python code and data to reproduce experiments from the article Carousel Personalization in Music Streaming Apps with Contextual Bandits published in the proceedings of the 14th ACM Conference on Recommender Systems (RecSys 2020 - Best Short Paper Candidate).

Carousel Personalization

Media services providers, such as the music streaming platform Deezer, often leverage swipeable carousels to recommend personalized content to their users. These carousels are ranked lists of L items or cards from a substantially larger catalog (of size K), e.g. L albums, artists or playlists recommended on the homepage of the Deezer app. Only a few cards, say L_init < L, are initially displayed to users, who can swipe the screen to see additional cards.

Selecting the most relevant content to display in carousels is a challenging task, as the catalog is large and as users have different preferences. Also, ranking matters: some cards might not be seen by some users due to the swipeable structure.

In Section 2 of our RecSys paper, we model carousel personalization as a multi-armed bandit problem with multiple plays, cascade-based updates, delayed batch feedback and contextual information on users. We aim at capturing the most important characteristics of real-world swipeable carousels.

Then, we evaluate our framework by addressing a carousel-based playlist recommendation task on Deezer. We selected K = 862 playlists, that were created by professional curators from Deezer with the purpose of complying with a specific music genre, cultural area or mood, and that are among the most popular ones on the service. Playlists' cover images constitute the cards that can be recommended to users on the app homepage in a carousel, updated on a daily basis, with L = 12 available slots and L_init = 3 cards initially displayed. We aim at maximizing display-to-stream rates i.e. at identifying the L cards on which each user is the most likely to click and then to stream the underlying content, at least once during the round (= binary reward of 1 for each streamed playlist).

To determine which method (among the several bandit-based strategies mentioned in the paper - see table below) would best succeed in making users stream the recommended playlists, extensive experiments were conducted in two steps:

  • First, offline experiments simulating the responses of 974 960 users (anonymized) to carousel-based recommendations were run, on a simulation environment and on data that we both publicly release in this repository.
  • In the paper, these experiments were completed by an online A/B test on the Deezer app.

Installation

Code

git clone https://github.com/deezer/carousel_bandits
cd carousel_bandits

Requirements: python 3, matplotlib, numpy, pandas, scipy, seaborn

Data

We release two datasets, detailed in Section 3.2 of the paper:

  • user_features.csv: a dataset of 974 960 fully anonymized Deezer users. Each user is described by:
    • a 96-dimensional embedding vector (fields dim_0 to dim_95), to which we subsequently add a bias term in our code, summarizing the user's musical preferences (see paper for details on computations of embedding vectors)
    • a segment: a k-means clustering with k = 100 clusters was performed internally, to also assign a segment to each user, as required by policies implementing our proposed semi-personalization strategy
  • playlist_features.csv: a dataset of 862 playlists. Each playlist i is described by:
    • a 97-dimensional weight vector, corresponding to the theta_i vectors from Section 3.2 of the paper (see paper for details on computations of weight vectors). For each user-playlist pair (u,i), the released "ground-truth" display-to-stream probability is as follows, where the 97-dimensional x_u vector corresponds to the concatenation of the 96-dim embedding vector of user u and of the bias term, and where sigma denotes the sigmoid activation function:

Download complete datasets

Due to size restrictions, this repository only provides the playlist_features.csv dataset and a very small version of the user dataset with 9 users, named user_features_small.csv, in the data folder.

The complete user_features.csv dataset with 974 960 users is available for download on Zenodo.

Please download it there and subsequently place it in the data folder.

Run Offline Experiments

Simulations proceed as detailed in Section 3.2 of the paper.

Type in the following commands to run offline experiments with similar hyperparameters w.r.t. the paper.

General Experiments (Figure 2 of RecSys paper)

Offline evaluation of Top-12 playlist recommendation: expected cumulative regrets of policies over 100 simulated rounds.

Evaluation of all policies on user_features_small.csv (useful for quick testing)

python main.py --users_path data/user_features_small.csv --policies random,etc-seg-explore,etc-seg-exploit,epsilon-greedy-explore,epsilon-greedy-exploit,kl-ucb-seg,ts-seg-naive,ts-seg-pessimistic,ts-lin-naive,ts-lin-pessimistic --n_users_per_round 9 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Evaluation of two different policies (random, ts-seg-pessimistic) on the complete user_features.csv

python main.py --policies random,ts-seg-pessimistic --print_every 5 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Evaluation of all policies on the complete user_features.csv (takes some time!)

python main.py --policies random,etc-seg-explore,etc-seg-exploit,epsilon-greedy-explore,epsilon-greedy-exploit,kl-ucb-seg,ts-seg-naive,ts-seg-pessimistic,ts-lin-naive,ts-lin-pessimistic --print_every 1 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Note on running times: the ts-lin-naive and ts-lin-pessimistic policies might take a few minutes per round on a regular laptop. To speed up computations, you might consider removing them from the list of evaluated policies.

Results should look like:

Important note on ts-lin policies: our implementation of naive and pessimistic linear Thompson Sampling strategies have been improved since the publication of the RecSys paper. As a consequence, regret curves from these two policies are a bit different than in Figure 2 of the paper (results are better). Nonetheless, all conclusions from the article remain valid, especially regarding the comparison with ts-seg-pessimistic, and the comparison among ts-lin-naive and ts-lin-pessimistic.

Cascade vs No-Cascade Experiments (Figure 3 of RecSys paper)

Comparison of cascade vs no-cascade policies for epsilon-greedy and ts-seg-pessimistic policies, over 100 simulated rounds.

We provide comments on our implementation of a cascade-based behaviour for these experiments in policies.py.

python main.py --policies epsilon-greedy-explore,epsilon-greedy-explore-no-cascade,ts-seg-pessimistic,ts-seg-pessimistic-no-cascade --print_every 5 --output_path cascade_experiment_results.json
python plot_results.py --data_path cascade_experiment_results.json

Results should look like:

Complete list of main.py parameters

Parameter Type Description Default Value
users_path string Path to user features file data/user_features.csv
playlists_path string Path to playlist features file data/playlist_features.csv
output_path string Path to a json file to save regret values of each policy accross time results.json
policies string List of bandit policies to evaluate, separated by commas, among:
- random
- etc-seg-explore
- etc-seg-exploit
- epsilon-greedy-explore
- epsilon-greedy-exploit
- kl-ucb-seg
- ts-seg-naive
- ts-seg-pessimistic
- ts-lin-naive
- ts-lin-pessimistic
- epsilon-greedy-explore-no-cascade
- ts-seg_pessimistic-no-cascade
Please see Section 3 of the RecSys paper for details on policies. New policies must be implemented in policies.py and then defined in the set_policies function from main.py.
random,ts-seg-naive
n_recos int Number of slots L in the carousel i.e. number of recommendations that each policy must provide to users at each round 12
l_init int Number of slots L_init initially visible in the carousel 3
n_users_per_round int Number of users drawn on the random subsets of users selected at each round.
Note: users are drawn with replacement, implying that some users might click on several playlists during a same round (multi-armed bandit with multiple plays setting)
20 000
n_rounds int Number of simulated rounds 100
print_every int Print cumulative regrets of all policies every print_every round 10

Cite

Please cite our paper if you use this code or data in your own work:

@inproceedings{bendada2020carousel,
  title={Carousel Personalization in Music Streaming Apps with Contextual Bandits},
  author={Bendada, Walid and Salha, Guillaume and Bontempelli, Theo},
  booktitle={14th ACM Conference on Recommender Systems (RecSys 2020)},
  year={2020}
}
Owner
Deezer
Deezer
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022