Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

Overview

JIGSAW: An unstructured mesh generator

JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulations and polyhedral decompositions of general planar, surface and volumetric domains. JIGSAW includes refinement-based algorithms for the construction of new meshes, optimisation-driven techniques for the improvement of existing grids, as well as routines to assemble (restricted) Delaunay tessellations, Voronoi complexes and Power diagrams.

This package provides a Python based scripting interface to the underlying JIGSAW mesh generator, including a range of additional facilities for file I/O, mesh visualisation and post-processing operations.

JIGSAW has been compiled and tested on various 64-bit Linux , Windows and Mac based platforms.

Quickstart

Ensure you have a c++ compiler and the cmake utility installed.
Clone/download + unpack this repository.
python3 setup.py build_external
python3 setup.py install
python3 example.py --IDnumber=0

Note: installation of JIGSAW requires a c++ compiler and the cmake utility. JIGSAW may also be installed as a conda package. See here for details.

Function Listing

See jigsawpy for a description of the various functions available.

setup.py    - compile and install JIGSAW's c++ backend using cmake.
example.py  - a list of demo programs. 

jigsaw.py   - cmd-line interface to JIGSAW's backend
libsaw.py   - api-lib. interface to JIGSAW's backend

loadmsh.py  - load *.msh files.
savemsh.py  - save *.msh files.
loadjig.py  - load *.jig files.
savejig.py  - save *.jig files.

project.py  - apply cartographic projection operators to mesh obj.

bisect.py   - refine a mesh obj. via bisection.
extrude.py  - create a mesh obj. via extrusion.

Example Problems

The following set of example problems are available in example.py:

example: 0; # simple 2-dim. examples to get started
example: 1; # simple 3-dim. examples to get started
example: 2; # frontal-delaunay methods in the plane
example: 3; # frontal-delaunay methods for surfaces
example: 4; # frontal-delaunay methods for volumes
example: 5; # user-defined mesh-spacing constraints
example: 6; # dealing with sharp-features in piecewise smooth domains
example: 7; # dealing with sharp-features in piecewise smooth domains
example: 8; # (re)mesh marching-cubes style outputs
example: 9; # creating prismatic volumes via extrusion

Run python3 example.py --IDnumber=N to call the N-th example. *.vtk output is saved to ../cache and can be visualised with, for example, Paraview.

License

This program may be freely redistributed under the condition that the copyright notices (including this entire header) are not removed, and no compensation is received through use of the software. Private, research, and institutional use is free. You may distribute modified versions of this code UNDER THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT WITH THE AUTHOR. (If you are not directly supplying this code to a customer, and you are instead telling them how they can obtain it for free, then you are not required to make any arrangement with me.)

DISCLAIMER: Neither I nor: Columbia University, the Massachusetts Institute of Technology, the University of Sydney, nor the National Aeronautics and Space Administration warrant this code in any way whatsoever. This code is provided "as-is" to be used at your own risk.

References

There are a number of publications that describe the algorithms used in JIGSAW in detail. If you make use of JIGSAW in your work, please consider including a reference to the following:

[1] - Darren Engwirda: Generalised primal-dual grids for unstructured co-volume schemes, J. Comp. Phys., 375, pp. 155-176, https://doi.org/10.1016/j.jcp.2018.07.025, 2018.

[2] - Darren Engwirda, Conforming Restricted Delaunay Mesh Generation for Piecewise Smooth Complexes, Procedia Engineering, 163, pp. 84-96, https://doi.org/10.1016/j.proeng.2016.11.024, 2016.

[3] - Darren Engwirda, Voronoi-based Point-placement for Three-dimensional Delaunay-refinement, Procedia Engineering, 124, pp. 330-342, http://dx.doi.org/10.1016/j.proeng.2015.10.143, 2015.

[4] - Darren Engwirda, David Ivers, Off-centre Steiner points for Delaunay-refinement on curved surfaces, Computer-Aided Design, 72, pp. 157-171, http://dx.doi.org/10.1016/j.cad.2015.10.007, 2016.

[5] - Darren Engwirda, Locally-optimal Delaunay-refinement and optimisation-based mesh generation, Ph.D. Thesis, School of Mathematics and Statistics, The University of Sydney, http://hdl.handle.net/2123/13148, 2014.

Comments
  • pathlib requirement

    pathlib requirement

    pathlib is listed as a requirement for all python versions, but it is part of the system in python >=3.4 (i.e. all currently supported version of python). Because of this dependency, pip check fails when jigsawpy is installed for python 3.x. I would request that it either be removed as a dependency in the next release or that it be constrained to python versions before 3.4.

    https://docs.python.org/3/library/pathlib.html

    enhancement 
    opened by xylar 9
  • The python package includes the `tests` directory

    The python package includes the `tests` directory

    Because of the line: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/setup.py#L135 the tests directory is being included in the conda-forge (and presumably the pypi) package. This directory should be excluded, or better yet only jigsawpy should be included:

    packages=find_packages(include=['jigsawypy', 'jigsawpy.*'])
    
    for-next-release 
    opened by xylar 5
  • Add call to find_library

    Add call to find_library

    This helps Windows find jigsaw.dll without a full path name.

    A similar call seems not to be needed for Linux and not to work for OSX.

    I created a patch identical to this in the conda-forge recipe: https://github.com/conda-forge/staged-recipes/pull/10842/commits/b8d1bc4d9cffadf1c8ca62069d5f6e676cc271e4

    opened by xylar 1
  • Update to jigsaw-0.9.15.x

    Update to jigsaw-0.9.15.x

    • Update to jigsaw-0.9.15.x.
    • Fix an i/o bug in handling of jig_t objects.
    • Fix an array-size bug in orthoball routines.
    • Add support for "jumbled" meshes.
    • Remove pathlib from REQUIRED in setup.py.
    • Support ellipsoidal-type initial conditions.
    • BREAKING: encode h(x) values as 32-bit floating point data to support "very-large" h(x) types.
    opened by dengwirda 0
  • Accelerating rDT mesh and optm iter.

    Accelerating rDT mesh and optm iter.

    Hello, I was wondering if there is any way to speed up the rDT mesh and Mesh optm parts of the jigsaw-python subtree source. Currently, I am compiling with gcc-11, using the standard CMake approach (maybe there's an optimization switch I haven't enabled?). I tried compiling it with intel 2018 and 2019 but I wasn't successful with the compilation. Any ideas on achieving some speed-ups will be greatly appreciated. Thanks, -J.

    opened by jreniel 0
  • Consider using specific exceptions rather than generic `Exception`

    Consider using specific exceptions rather than generic `Exception`

    I don't find the exceptions raised by jigsawpy to be very intuitive, and I think that might be true for most python users.

    As an example: https://github.com/dengwirda/jigsaw-python/blob/f87571945975b4882d8c27bdfff9275f6e46baa8/jigsawpy/savemsh.py#L613

    I would expect something like:

        if (not isinstance(name, str)):
            raise TypeError("Argument 'name' to savemsh should be of type str")
    

    As I understand it, the generic Exception class is only intended as a base class for exceptions and shouldn't be used directly.

    Python is case sensitive so the use of NAME here also led to some confusion for me.

    for-next-release 
    opened by xylar 6
  • Still getting output to the terminal with `opts.verbosity = -1`

    Still getting output to the terminal with `opts.verbosity = -1`

    I was told that opts.verbosity = -1 should mean that no output went to the terminal window, just to the log file. But I am finding that I still get terminal output when I have this option set. I verified that the .jig file does, indeed have:

      VERBOSITY=-1
    

    but I still see something like this to the terminal:

    #------------------------------------------------------------
    #
    #   ,o, ,o,       /                                 
    #    `   `  e88~88e  d88~\   /~~~8e Y88b    e    / 
    #   888 888 88   88 C888         88b Y88b  d8b  /   
    #   888 888 "8b_d8"  Y88b   e88~-888  Y888/Y88b/  
    #   888 888  /        888D C88   888   Y8/  Y8/     
    #   88P 888 Cb      \_88P   "8b_-888    Y    Y    
    # \_8"       Y8""8D                             
    #
    #------------------------------------------------------------
    # JIGSAW: an unstructured mesh generation library.  
    #------------------------------------------------------------
    ...
    
    bug for-next-release 
    opened by xylar 2
  • Cannot create an icosahedral mesh without providing a mesh argument

    Cannot create an icosahedral mesh without providing a mesh argument

    It seems the intention is that one can create an icosahedral mesh without passing a mesh object: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/jigsawpy/init.py#L105 but when I try this:

            jigsawpy.cmd.icosahedron(opts, subdivisions)
    

    I get:

    Traceback (most recent call last):
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/bin/compass", line 33, in <module>
        sys.exit(load_entry_point('compass', 'console_scripts', 'compass')())
      File "/home/xylar/code/compass/separate_mesh_steps/compass/__main__.py", line 63, in main
        commands[args.command]()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/run/serial.py", line 281, in main
        run_step()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/run/serial.py", line 249, in run_step
        test_case.run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/ocean/tests/global_ocean/mesh/__init__.py", line 109, in run
        super().run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/testcase.py", line 190, in run
        self._run_step(step, self.new_step_log_file)
      File "/home/xylar/code/compass/separate_mesh_steps/compass/testcase.py", line 306, in _run_step
        step.run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/mesh/spherical.py", line 350, in run
        self.make_jigsaw_mesh(subdivisions)
      File "/home/xylar/code/compass/separate_mesh_steps/compass/mesh/spherical.py", line 376, in make_jigsaw_mesh
        jigsawpy.cmd.icosahedron(opts, subdivisions)
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/lib/python3.9/site-packages/jigsawpy/__init__.py", line 106, in icosahedron
        return jigsaw.icosahedron(
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/lib/python3.9/site-packages/jigsawpy/jigsaw.py", line 597, in icosahedron
        raise Exception("Incorrect type: MESH.")
    Exception: Incorrect type: MESH.
    

    It seems that this check: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/jigsawpy/jigsaw.py#L519-L520 should check for None:

        if (mesh is not None and not isinstance(mesh, jigsaw_msh_t)):
            raise Exception("Incorrect type: MESH.")
    
    bug for-next-release 
    opened by xylar 2
  • pip, setup, build_external, etc

    pip, setup, build_external, etc

    Are the method(s) used to install binaries sufficient? Currently, two options are supported:

    1. setup.py build_external, etc builds and installs the jigsaw-cpp binaries within jigsawpy itself.
    2. If no local binaries are found, a global search of the machine path is done to pick them up in, e.g. usr/local/bin, etc --- used by the conda-based workflow.

    @jreniel has suggested installing to the python environment directory, either as a 3rd option, or, perhaps(?) a replacement for 1.

    Should also work out what's needed to make jigsawpy available for direct install via pip.

    enhancement 
    opened by dengwirda 6
Releases(v0.3.3)
Owner
Darren Engwirda
Computational scientist at LANL --- climate modelling, unstructured grids, numerical methods.
Darren Engwirda
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.

News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L

1.1k Dec 24, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023
Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
Face Anonymizer - FaceAnonApp v1.0

Face Anonymizer - FaceAnonApp v1.0 Blur faces from image and video files in /data/files folder. Contents Repo of the source files for the FaceAnonApp.

6 Apr 18, 2022
Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, rastreia padrões de gestos em vez de um mouse físico.

mouserController Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, r

Vinícius Azevedo 6 Jun 28, 2022
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"

Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati

Pengyuan Lyu 261 Nov 21, 2022
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

Minghui Liao 930 Jan 04, 2023
基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

SimpleRPA 基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化 简介 SimpleRPA是一款python语言编写的开源RPA工具(桌面自动控制工具),用户可以通过配置yaml格式的文件,来实现桌面软件的自动化控制,简化繁杂重复的工作,比如运营人员给用户发消息,

Song Hui 7 Jun 26, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022