A3C LSTM Atari with Pytorch plus A3G design

Overview

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!!

RL A3C Pytorch

A3C LSTM playing Breakout-v0 A3C LSTM playing SpaceInvadersDeterministic-v3 A3C LSTM playing MsPacman-v0 A3C LSTM playing BeamRider-v0 A3C LSTM playing Seaquest-v0

NEWLY ADDED A3G!!

New implementation of A3C that utilizes GPU for speed increase in training. Which we can call A3G. A3G as opposed to other versions that try to utilize GPU with A3C algorithm, with A3G each agent has its own network maintained on GPU but shared model is on CPU and agent models are quickly converted to CPU to update shared model which allows updates to be frequent and fast by utilizing Hogwild Training and make updates to shared model asynchronously and without locks. This new method greatly increase training speed and models that use to take days to train can be trained in as fast as 10minutes for some Atari games! 10-15minutes for Breakout to start to score over 400! And 10mins to solve Pong!

This repository includes my implementation with reinforcement learning using Asynchronous Advantage Actor-Critic (A3C) in Pytorch an algorithm from Google Deep Mind's paper "Asynchronous Methods for Deep Reinforcement Learning."

See a3c_continuous a newly added repo of my A3C LSTM implementation for continuous action spaces which was able to solve BipedWalkerHardcore-v2 environment (average 300+ for 100 consecutive episodes)

A3C LSTM

I implemented an A3C LSTM model and trained it in the atari 2600 environments provided in the Openai Gym. So far model currently has shown the best prerfomance I have seen for atari game environments. Included in repo are trained models for SpaceInvaders-v0, MsPacman-v0, Breakout-v0, BeamRider-v0, Pong-v0, Seaquest-v0 and Asteroids-v0 which have had very good performance and currently hold the best scores on openai gym leaderboard for each of those games(No plans on training model for any more atari games right now...). Saved models in trained_models folder. *Removed trained models to reduce the size of repo

Have optimizers using shared statistics for RMSProp and Adam available for use in training as well option to use non shared optimizer.

Gym atari settings are more difficult to train than traditional ALE atari settings as Gym uses stochastic frame skipping and has higher number of discrete actions. Such as Breakout-v0 has 6 discrete actions in Gym but ALE is set to only 4 discrete actions. Also in GYM atari they randomly repeat the previous action with probability 0.25 and there is time/step limit that limits performance.

link to the Gym environment evaluations below

Tables Best 100 episode Avg Best Score
SpaceInvaders-v0 5808.45 ± 337.28 13380.0
SpaceInvaders-v3 6944.85 ± 409.60 20440.0
SpaceInvadersDeterministic-v3 79060.10 ± 5826.59 167330.0
Breakout-v0 739.30 ± 18.43 864.0
Breakout-v3 859.57 ± 1.97 864.0
Pong-v0 20.96 ± 0.02 21.0
PongDeterministic-v3 21.00 ± 0.00 21.0
BeamRider-v0 8441.22 ± 221.24 13130.0
MsPacman-v0 6323.01 ± 116.91 10181.0
Seaquest-v0 54203.50 ± 1509.85 88840.0

The 167,330 Space Invaders score is World Record Space Invaders score and game ended only due to GYM timestep limit and not from loss of life. When I increased the GYM timestep limit to a million its reached a score on Space Invaders of approximately 2,300,000 and still ended due to timestep limit. Most likely due to game getting fairly redundent after a while

Due to gym version Seaquest-v0 timestep limit agent scores lower but on Seaquest-v4 with higher timestep limit agent beats game (see gif above) with max possible score 999,999!!

Requirements

  • Python 2.7+
  • Openai Gym and Universe
  • Pytorch

Training

When training model it is important to limit number of worker processes to number of cpu cores available as too many processes (e.g. more than one process per cpu core available) will actually be detrimental in training speed and effectiveness

To train agent in Pong-v0 environment with 32 different worker processes:

python main.py --env Pong-v0 --workers 32

#A3C-GPU training using machine with 4 V100 GPUs and 20core CPU for PongDeterministic-v4 took 10 minutes to converge

To train agent in PongDeterministic-v4 environment with 32 different worker processes on 4 GPUs with new A3G:

python main.py --env PongDeterministic-v4 --workers 32 --gpu-ids 0 1 2 3 --amsgrad True

Hit Ctrl C to end training session properly

A3C LSTM playing Pong-v0

Evaluation

To run a 100 episode gym evaluation with trained model

python gym_eval.py --env Pong-v0 --num-episodes 100

Notice BeamRiderNoFrameskip-v4 reaches scores over 50,000 in less than 2hrs of training compared to the gym v0 version this shows the difficulty of those versions but also the timelimit being a major factor in score level

These training charts were done on a DGX Station using 4GPUs and 20core Cpu. I used 36 worker agents and a tau of 0.92 which is the lambda in Generalized Advantage Estimation equation to introduce more variance due to the more deterministic nature of using just a 4 frame skip environment and a 0-30 NoOp start BeamRider Training Boxing training Pong Training SpaceInvaders Training Qbert training

Project Reference

Owner
David Griffis
David Griffis
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022