Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

Overview

New State-of-the-Art in Preposition Sense Disambiguation

Supervisor:

Institutions:

Project Description

The disambiguation of words is a central part of NLP tasks. In particular, there is the ambiguity of prepositions, which has been a problem in NLP for over a decade and still is. For example the preposition 'in' can have a temporal (e.g. in 2021) or a spatial (e.g. in Frankuft) meaning. A strong motivation behind the learning of these meanings are current research attempts to transfer text to artifical scenes. A good understanding of the real meaning of prepositions is crucial in order for the machine to create matching scenes.

With the birth of the transformer models in 2017 [1], attention based models have been pushing boundries in many NLP disciplines. In particular, bert, a transformer model by google and pre-trained on more than 3,000 M words, obtained state-of-the-art results on many NLP tasks and Corpus.

The goal of this project is to use modern transformer models to tackle the problem of preposition sense disambiguation. Therefore, we trained a simple bert model on the SemEval 2007 dataset [2], a central benchmark dataset for this task. To the best of our knowledge, the best purposed model for disambiguating the meanings of prepositions on the SemEval achives an accuracy of up to 88% [3]. Neither more recent approaches surpass this frontier[4][5] . Our model achives an accuracy of 90.84%, out-performing the current state-of-the-art.

How to train

To meet our goals, we cleand the SemEval 2007 dataset to only contain the needed information. We have added it to the repository and can be found in ./data/training-data.tsv.

Train a bert model:
First, install the requirements.txt. Afterwards, you can train the bert-model by:

python3 trainer.py --batch-size 16 --learning-rate 1e-4 --epochs 4 --data-path "./data/training_data.tsv"

The chosen hyper-parameters in the above example are tuned and already set by default. After training, this will save the weights and config to a new folder ./model_save/. Feel free to omit this training-step and use our trained weights directly.

Examples

We attach an example tagger, which can be used in an interactive manner. python3 -i tagger.py

Sourrond the preposition, for which you like to know the meaning of, with <head>...</head> and feed it to the tagger:

>>> tagger.tag("I am <head>in</head> big trouble")
Predicted Meaning: Indicating a state/condition/form, often a mental/emotional one that is being experienced 

>>> tagger.tag("I am speaking <head>in</head> portuguese.")
Predicted Meaning: Indicating the language, medium, or means of encoding (e.g., spoke in German)

>>> tagger.tag("He is swimming <head>with</head> his hands.")
Predicted Meaning: Indicating the means or material used to perform an action or acting as the complement of similar participle adjectives (e.g., crammed with, coated with, covered with)

>>> tagger.tag("She blinked <head>with</head> confusion.")
Predicted Meaning: Because of / due to (the physical/mental presence of) (e.g., boiling with anger, shining with dew)

References

[1] Vaswani, Ashish et al. (2017). Attention is all you need. Advances in neural information processing systems. P. 5998--6008.

[2] Litkowski, Kenneth C and Hargraves, Orin (2007). SemEval-2007 Task 06: Word-sense disambiguation of prepositions. Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007). P. 24--29

[3] Litkowski, Ken. (2013). Preposition disambiguation: Still a problem. CL Research, Damascus, MD.

[4] Gonen, Hila and Goldberg, Yoav. (2016). Semi supervised preposition-sense disambiguation using multilingual data. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. P. 2718--2729

[5] Gong, Hongyu and Mu, Jiaqi and Bhat, Suma and Viswanath, Pramod (2018). Preposition Sense Disambiguation and Representation. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. P. 1510--1521

Owner
Dirk Neuhäuser
Dirk Neuhäuser
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023