Winners of DrivenData's Overhead Geopose Challenge

Overview



Banner Image

Images shown are from the public Urban Semantic 3D Dataset, provided courtesy of DigitalGlobe

Goal of the Competition

Overhead satellite imagery provides critical, time-sensitive information for use in arenas such as disaster response, navigation, and security. Most current methods for using aerial imagery assume images are taken from directly overhead, known as near-nadir. However, the first images available are often taken from an angle — they are oblique. Effects from these camera orientations complicate useful tasks such as change detection, vision-aided navigation, and map alignment.

In this challenge, participants made satellite imagery taken from a significant angle more useful for time-sensitive applications such as disaster and emergency response

What's in This Repository

This repository contains code from winning competitors in the Overhead Geopose Challenge.

Winning code for other DrivenData competitions is available in the competition-winners repository.

Winning Submissions

Prediction Contest

All of the models below build on the solution provided in the benchmark blog post: Overhead Geopose Challenge - Benchmark. Additional solution details can be found in the reports folder inside the directory for each submission.

The weights for each winning model can be downloaded from the National Geospatial-Intelligence Agency's (NGA's) DataPort page.

Place Team or User Public Score Private Score Summary of Model
1 selim_sef 0.902184 0.902459 An EfficientNet V2 L encoder is used instead of the Resnet34 encoder because it has a huge capacity and is less prone to overfitting. The decoder is a UNet with more filters and additional convolution blocks for better handling of fine-grained details. MSE loss would produce imbalance for different cities, depending on building heights. The model is trained with an R2 loss for AGL/MAG outputs, which reflects the final competition metric and is more robust to noisy training data.
2 bloodaxe 0.889955 0.891393 I’ve trained a bunch of UNet-like models and averaged their predictions. Sounds simple, yet I used quite heavy encoders (B6 & B7) and custom-made decoders to produce very accurate height map predictions at original resolution. Another crucial part of the solution was extensive custom data augmentation for height, orientation, scale, GSD, and image RGB values.
3 o__@ 0.882882 0.882801 I ensembled the VFlow-UNet model using a large input resolution and a large backbone without downsampling. Better results were obtained when the model was trained on all images from the training set. The test set contains images of the same location as the images in the training set. This overlap was identified by image matching to improve the prediction results.
4 kbrodt 0.872775 0.873057 The model uses a UNet architecture with various encoders (efficientnet-b{6,7} and senet154) and has only one above-ground level (AGL) head and two heads in the bottleneck for scale and angle. The features are a random 512x512 crop of an aerial image, the city's one hot encoding, and ground sample distance (GSD). The model is trained with mean squared error (MSE) loss function for all targets (AGL, scale, angle) using AdamW optimizer with 1e-4 learning rate.

Model Write-up Bonus

Prediction rank Team or User Public Score Private Score Summary of Model
2 bloodaxe 0.889955 0.891393 See the "Prediction Contest" section above
5 chuchu 0.856847 0.855636 We conducted an empirical upper bound analysis, which suggested that the main errors are from height prediction and the rest are from angle prediction. To overcome the bottlenecks we proposed HR-VFLOW, which takes HRNet as backbone and adopts simple multi-scale fusion as multi-task decoders to predict height, magnitude, angle, and scale simultaneously. To handle the height variance, we first pretrained the model on all four cities and then transferred the pretrained model to each specific city for better city-wise performance.
7 vecxoz 0.852948 0.851828 First, I implemented training with automatic mixed precision in order to speed up training and facilitate experiments with the large architectures. Second, I implemented 7 popular decoder architectures and conducted extensive preliminary research of different combinations of encoders and decoders. For the most promising combinations I ran long training for at least 200 epochs to study best possible scores and training dynamics. Third, I implemented an ensemble using weighted average for height and scale target and circular average for angle target.

Approved for public release, 21-943

Owner
DrivenData
Data science competitions for social good.
DrivenData
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022