Package for extracting emotions from social media text. Tailored for financial data.

Overview

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts

EmTract is a tool that extracts emotions from social media text. It incorporates key aspects of social media data (e.g., non-standard phrases, emojis and emoticons), and uses cutting edge natural language processing (NLP) techniques to learn latent representations, such as word order, word usage, and local context, to predict the emotions.

Details on the model and text processing are in the appendix of EmTract: Investor Emotions and Market Behavior.

User Guide

Installation

Before being able to use the package python3 must be installed. We also recommend using a virtual environment so that the tool runs with the same dependencies with which it was developed. Instruction on how to set up a virtual environment can be found here.

Once basic requirements are setup, follow these instructions:

  1. Clone the repository: git clone https://github.com/dvamossy/EmTract.git
  2. Navigate into repository: cd EmTract
  3. (Optional) Create and activate virtual environment:
    python3 -m venv venv
    source venv/bin/activate
    
  4. Run ./install.sh. This will install python requirements and also download our model files

Usage

Our package should be run with the following command:

python3 -m emtract.inference [args]

Where args are the following:

  • --model_type: can be twitter or stocktwits. Default is stocktwits
  • --interactive: Run in interactive mode
  • --input_file/-i: input to use for predictions (only for non interactive mode)
  • --output_file/-o: output location for predictions(only for non interactive mode)

Output

For each input (i.e., text), EmTract outputs probabilities (they sum to 1!) corresponding to seven emotional states: neutral, happy, sad, anger, disgust, surprise, fear. It also labels the text by computing the argmax of the probabilities.

Modes

Our tool can be run in 2 execution modes.

Interactive mode allows the user to input a tweet and evaluate it in real time. This is great for exploratory analysis.

python3 -m emtract.inference --interactive

The other mode is intended for automating predictions. Here an input file must be specified that will be used as the prediction input. This file must be a csv or text file with 1 column. This column should have the messages/text to predict with.

python3 -m emtract.inference -i tweets_example.csv -o predictions.csv

Model Types

Our models leverage GloVe Embeddings with Bidirectional GRU architecture.

We trained our emotion models with 2 different data sources. One from Twitter, and another from StockTwits. The Twitter training data comes from here; it is available at data/twitter_emotion.csv. The StockTwits training data is explained in the paper.

One of the key concerns using emotion packages is that it is unknown how well they transfer to financial text data. We alleviate this concern by hand-tagging 10,000 StockTwits messages. These are available at data/hand_tagged_sample.parquet.snappy; they were not included during training any of our models. We use this for testing model performance, and alternative emotion packages (notebooks/Alternative Packages.ipynb).

We found our StockTwits model to perform best on the hand-tagged sample, and therefore it is used as the default for predictions.

Alternative Models

We also have an implementation of DistilBERT in notebooks/Alternative Models.ipynb on the Twitter data; which can be easily extended to any other state-of-the-art models. We find marginal performance gains on the hand-tagged sample, which comes at the cost of far slower inference.

Citation

If you use EmTract in your research, please cite us as follows:

Domonkos Vamossy and Rolf Skog. EmTract: Investor Emotions and Market Behavior https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3975884, 2021.

Contributing and Feedback

This project welcomes contributions and suggestions.

Our goal is to provide a unified framework for extracting emotions from financial social media text. Particularly useful for research on emotions in financial contexts would be labeling financial social media text. We plan to upload sample text upon request.

Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022