Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Overview

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment

This is a pytorch project for the paper Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment by Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei Yu and Jiaya Jia presented at ICCV2021.

Introduction

It is important to enhance low-light videos where previous work is mostly trained on paired static images or paired videos of static scene. We instead propose a new dataset formed by our new strategies that contains high-quality spatially-aligned video pairs from dynamic scenes in low- and normal-light conditions. It is by building a mechatronic system to precisely control dynamics during the video capture process, and further align the video pairs, both spatially and temporally, by identifying the system's uniform motion stage. Besides the dataset, we also propose an end-to-end framework, in which we design a self-supervised strategy to reduce noise, while enhancing illumination based on the Retinex theory.

paper link

SDSD dataset

The SDSD dataset is collected as dynamic video pairs containing low-light and normal-light videos. This dataset is consists of two parts, i.e., the indoor subset and the outdoor subset. There are 70 video pairs in the indoor subset, and there are 80 video pairs in the outdoor subset.

All data is hosted on baidu pan (验证码: zcrb):
indoor_np: the data in the indoor subset utilized for training, all video frames are saved as .npy file and the resolution is 512 x 960 for fast training.
outdoor_np: the data in the outdoor subset utilized for training, all video frames are saved as .npy file and the resolution is 512 x 960 for fast training.
indoor_png: the original video data in the indoor subset. All frames are saved as .png file and the resolution is 1080 x 1920.
outdoor_png: the original video data in the outdoor subset. All frames are saved as .png file and the resolution is 1080 x 1920.

The evaluation setting could follow the following descriptions:

  1. randomly select 12 scenes from indoor subset and take others as the training data. The performance on indoor scene is computed on the first 30 frames in each of this 12 scenes, i.e., 360 frames.
  2. randomly select 13 scenes from outdoor subset and take others as the training data. The performance on indoor scene is computed on the first 30 frames in each of this 13 scenes, i.e., 390 frames. (the split of training and testing is pointed out by "testing_dir" in the corresponding config file)

The arrangement of the dataset is
--indoor/outdoor
----GT (the videos under normal light)
--------pair1
--------pair2
--------...
----LQ (the videos under low light)
--------pair1
--------pair2
--------...

After download the dataset, place them in './dataset' (you can also place the dataset in other place, once you modify "path_to_dataset" in the corresponding config file).

The smid dataset for training

Different from the original setting of SMID, our work aims to enhance sRGB videos rather than RAW videos. Thus, we first transfer the RAW data to sRGB data with rawpy. You can download the processed dataset for experiments using the following link: baidu pan (验证码: btux):

The arrangement of the dataset is
--smid
----SMID_Long_np (the frame under normal light)
--------0001
--------0002
--------...
----SMID_LQ_np (the frame under low light)
--------0001
--------0002
--------...

After download the dataset, place them in './dataset'. The arrangement of the dataset is the same as that of SDSD. You can also place the dataset in other place, once you modify "path_to_dataset" in the corresponding config file.

Project Setup

First install Python 3. We advise you to install Python 3 and PyTorch with Anaconda:

conda create --name py36 python=3.6
source activate py36

Clone the repo and install the complementary requirements:

cd $HOME
git clone --recursive [email protected]:dvlab-research/SDSD.git
cd SDSD
pip install -r requirements.txt

And compile the library of DCN:

python setup.py build
python setup.py develop
python setup.py install

Train

The training on indoor subset of SDSD:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4320 train.py -opt options/train/train_in_sdsd.yml --launcher pytorch

The training on outdoor subset of SDSD:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4320 train.py -opt options/train/train_out_sdsd.yml --launcher pytorch

The training on SMID:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4322 train.py -opt options/train/train_smid.yml --launcher pytorch

Quantitative Test

We use PSNR and SSIM as the metrics for evaluation.

For the evaluation on indoor subset of SDSD, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_in_sdsd.yml use the following command line:

python quantitative_test.py -opt options/test/test_in_sdsd.yml

For the evaluation on outdoor subset of SDSD, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_out_sdsd.yml use the following command line:

python quantitative_test.py -opt options/test/test_out_sdsd.yml

For the evaluation on SMID, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_smid.yml use the following command line:

python quantitative_test.py -opt options/test/test_smid.yml

Pre-trained Model

You can download our trained model using the following links: https://drive.google.com/file/d/1_V0Dxtr4dZ5xZuOsU1gUIUYUDKJvj7BZ/view?usp=sharing

the model trained with indoor subset in SDSD: indoor_G.pth
the model trained with outdoor subset in SDSD: outdoor_G.pth
the model trained with SMID: smid_G.pth

Qualitative Test

We provide the script to visualize the enhanced frames. Please download the pretrained models or use your trained models, and then use the following command line

python qualitative_test.py -opt options/test/test_in_sdsd.yml
python qualitative_test.py -opt options/test/test_out_sdsd.yml
python qualitative_test.py -opt options/test/test_smid.yml

Citation Information

If you find the project useful, please cite:

@inproceedings{wang2021sdsd,
  title={Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment},
  author={Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei Yu and Jiaya Jia},
  booktitle={ICCV},
  year={2021}
}

Acknowledgments

This source code is inspired by EDVR.

Contributions

If you have any questions/comments/bug reports, feel free to e-mail the author Xiaogang Xu ([email protected]).

Owner
DV Lab
Deep Vision Lab
DV Lab
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023