Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

Overview

pypi docs License

English | 简体中文

Easy Parallel Library

Overview

Easy Parallel Library (EPL) is a general and efficient library for distributed model training.

  • Usability - Users can implement different parallelism strategies with a few lines of annotations, including data parallelism, pipeline parallelism, tensor model parallelism, and their hybrids.
  • Memory Efficient - EPL provides various memory-saving techniques, including gradient checkpoint, ZERO, CPU Offload, etc. Users are able to train larger models with fewer computing resources.
  • High Performance - EPL provides an optimized communication library to achieve high scalability and efficiency.

For more information, you may read the docs.

EPL Model Zoo provides end-to-end parallel training examples.

Installation

To install EPL, please refer to the following instructions.

Examples

Here are a few examples of different parallelism strategies by changing only annotations. Please refer to API documentation for API details and tutorials for more examples.

Data Parallelism

The following example shows a basic data parallelism annotation. The data parallelism degree is determined by the allocated GPU number.

+ import epl
+ epl.init()
+ with epl.replicate(device_count=1):
    model()

Pipeline Parallelism

The following example shows pipeline parallelism with two pipeline stages, each stage is computed with one GPU. If the total GPU number is 4, EPL will automatically apply two-degree data parallelism over the model pipeline.

+ import epl
+ 
+ config = epl.Config({"pipeline.num_micro_batch": 4})
+ epl.init(config)
+ with epl.replicate(device_count=1, name="stage_0"):
    model_part1()
+ with epl.replicate(device_count=1, name="stage_1"):
    model_part2()

Tensor Model Parallelism

The following example shows a tensor model parallelism annotation. We apply data parallelism to the ResNet part, and apply tensor model parallelism to classification part.

+ import epl
+ config = epl.Config({"cluster.colocate_split_and_replicate": True})
+ epl.init(config)
+ with epl.replicate(8):
    ResNet()
+ with epl.split(8):
    classification()

Publication

If you use EPL in your publication, please cite it by using the following BibTeX entry.

@misc{jia2021whale,
      title={Whale: Scaling Deep Learning Model Training to the Trillions}, 
      author={Xianyan Jia and Le Jiang and Ang Wang and Jie Zhang and Xinyuan Li and Wencong Xiao and Langshi chen and Yong Li and Zhen Zheng and Xiaoyong Liu and Wei Lin},
      year={2021},
      eprint={2011.09208},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}

Contact Us

Join the Official Discussion Group on DingTalk.

DingTalk Group

Owner
Alibaba
Alibaba Open Source
Alibaba
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
wlad 2 Dec 19, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022